Step |
Hyp |
Ref |
Expression |
1 |
|
indsum.1 |
|- ( ph -> O e. Fin ) |
2 |
|
indsum.2 |
|- ( ph -> A C_ O ) |
3 |
|
indsum.3 |
|- ( ( ph /\ x e. O ) -> B e. CC ) |
4 |
2
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. O ) |
5 |
|
pr01ssre |
|- { 0 , 1 } C_ RR |
6 |
|
indf |
|- ( ( O e. Fin /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
7 |
1 2 6
|
syl2anc |
|- ( ph -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
8 |
7
|
ffvelrnda |
|- ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. { 0 , 1 } ) |
9 |
5 8
|
sselid |
|- ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. RR ) |
10 |
9
|
recnd |
|- ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. CC ) |
11 |
10 3
|
mulcld |
|- ( ( ph /\ x e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) e. CC ) |
12 |
4 11
|
syldan |
|- ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) e. CC ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. ( O \ A ) ) -> O e. Fin ) |
14 |
2
|
adantr |
|- ( ( ph /\ x e. ( O \ A ) ) -> A C_ O ) |
15 |
|
simpr |
|- ( ( ph /\ x e. ( O \ A ) ) -> x e. ( O \ A ) ) |
16 |
|
ind0 |
|- ( ( O e. Fin /\ A C_ O /\ x e. ( O \ A ) ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 0 ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 0 ) |
18 |
17
|
oveq1d |
|- ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = ( 0 x. B ) ) |
19 |
|
difssd |
|- ( ph -> ( O \ A ) C_ O ) |
20 |
19
|
sselda |
|- ( ( ph /\ x e. ( O \ A ) ) -> x e. O ) |
21 |
3
|
mul02d |
|- ( ( ph /\ x e. O ) -> ( 0 x. B ) = 0 ) |
22 |
20 21
|
syldan |
|- ( ( ph /\ x e. ( O \ A ) ) -> ( 0 x. B ) = 0 ) |
23 |
18 22
|
eqtrd |
|- ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = 0 ) |
24 |
2 12 23 1
|
fsumss |
|- ( ph -> sum_ x e. A ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. O ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) ) |
25 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> O e. Fin ) |
26 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ O ) |
27 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
28 |
|
ind1 |
|- ( ( O e. Fin /\ A C_ O /\ x e. A ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) |
29 |
25 26 27 28
|
syl3anc |
|- ( ( ph /\ x e. A ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) |
30 |
29
|
oveq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = ( 1 x. B ) ) |
31 |
3
|
mulid2d |
|- ( ( ph /\ x e. O ) -> ( 1 x. B ) = B ) |
32 |
4 31
|
syldan |
|- ( ( ph /\ x e. A ) -> ( 1 x. B ) = B ) |
33 |
30 32
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = B ) |
34 |
33
|
sumeq2dv |
|- ( ph -> sum_ x e. A ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. A B ) |
35 |
24 34
|
eqtr3d |
|- ( ph -> sum_ x e. O ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. A B ) |