| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indsum.1 |
|
| 2 |
|
indsum.2 |
|
| 3 |
|
indsum.3 |
|
| 4 |
2
|
sselda |
|
| 5 |
|
pr01ssre |
|
| 6 |
|
indf |
|
| 7 |
1 2 6
|
syl2anc |
|
| 8 |
7
|
ffvelcdmda |
|
| 9 |
5 8
|
sselid |
|
| 10 |
9
|
recnd |
|
| 11 |
10 3
|
mulcld |
|
| 12 |
4 11
|
syldan |
|
| 13 |
1
|
adantr |
|
| 14 |
2
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
|
ind0 |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
difssd |
|
| 20 |
19
|
sselda |
|
| 21 |
3
|
mul02d |
|
| 22 |
20 21
|
syldan |
|
| 23 |
18 22
|
eqtrd |
|
| 24 |
2 12 23 1
|
fsumss |
|
| 25 |
1
|
adantr |
|
| 26 |
2
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
|
ind1 |
|
| 29 |
25 26 27 28
|
syl3anc |
|
| 30 |
29
|
oveq1d |
|
| 31 |
3
|
mullidd |
|
| 32 |
4 31
|
syldan |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
33
|
sumeq2dv |
|
| 35 |
24 34
|
eqtr3d |
|