| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indsumin.1 |
|
| 2 |
|
indsumin.2 |
|
| 3 |
|
indsumin.3 |
|
| 4 |
|
indsumin.4 |
|
| 5 |
|
indsumin.5 |
|
| 6 |
|
inindif |
|
| 7 |
6
|
a1i |
|
| 8 |
|
inundif |
|
| 9 |
8
|
eqcomi |
|
| 10 |
9
|
a1i |
|
| 11 |
|
pr01ssre |
|
| 12 |
|
ax-resscn |
|
| 13 |
11 12
|
sstri |
|
| 14 |
|
indf |
|
| 15 |
1 4 14
|
syl2anc |
|
| 16 |
15
|
adantr |
|
| 17 |
3
|
sselda |
|
| 18 |
16 17
|
ffvelcdmd |
|
| 19 |
13 18
|
sselid |
|
| 20 |
19 5
|
mulcld |
|
| 21 |
7 10 2 20
|
fsumsplit |
|
| 22 |
1
|
adantr |
|
| 23 |
4
|
adantr |
|
| 24 |
|
inss2 |
|
| 25 |
24
|
a1i |
|
| 26 |
25
|
sselda |
|
| 27 |
|
ind1 |
|
| 28 |
22 23 26 27
|
syl3anc |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
inss1 |
|
| 31 |
30
|
a1i |
|
| 32 |
31
|
sselda |
|
| 33 |
32 5
|
syldan |
|
| 34 |
33
|
mullidd |
|
| 35 |
29 34
|
eqtrd |
|
| 36 |
35
|
sumeq2dv |
|
| 37 |
1
|
adantr |
|
| 38 |
4
|
adantr |
|
| 39 |
3
|
ssdifd |
|
| 40 |
39
|
sselda |
|
| 41 |
|
ind0 |
|
| 42 |
37 38 40 41
|
syl3anc |
|
| 43 |
42
|
oveq1d |
|
| 44 |
|
difssd |
|
| 45 |
44
|
sselda |
|
| 46 |
45 5
|
syldan |
|
| 47 |
46
|
mul02d |
|
| 48 |
43 47
|
eqtrd |
|
| 49 |
48
|
sumeq2dv |
|
| 50 |
|
diffi |
|
| 51 |
2 50
|
syl |
|
| 52 |
|
sumz |
|
| 53 |
52
|
olcs |
|
| 54 |
51 53
|
syl |
|
| 55 |
49 54
|
eqtrd |
|
| 56 |
36 55
|
oveq12d |
|
| 57 |
|
infi |
|
| 58 |
2 57
|
syl |
|
| 59 |
58 33
|
fsumcl |
|
| 60 |
59
|
addridd |
|
| 61 |
21 56 60
|
3eqtrd |
|