| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isph.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | isph.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | isph.3 |  |-  M = ( -v ` U ) | 
						
							| 4 |  | isph.6 |  |-  N = ( normCV ` U ) | 
						
							| 5 |  | phnv |  |-  ( U e. CPreHilOLD -> U e. NrmCVec ) | 
						
							| 6 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 7 | 2 6 4 | nvop |  |-  ( U e. NrmCVec -> U = <. <. G , ( .sOLD ` U ) >. , N >. ) | 
						
							| 8 |  | eleq1 |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( U e. CPreHilOLD <-> <. <. G , ( .sOLD ` U ) >. , N >. e. CPreHilOLD ) ) | 
						
							| 9 | 2 | fvexi |  |-  G e. _V | 
						
							| 10 |  | fvex |  |-  ( .sOLD ` U ) e. _V | 
						
							| 11 | 4 | fvexi |  |-  N e. _V | 
						
							| 12 | 1 2 | bafval |  |-  X = ran G | 
						
							| 13 | 12 | isphg |  |-  ( ( G e. _V /\ ( .sOLD ` U ) e. _V /\ N e. _V ) -> ( <. <. G , ( .sOLD ` U ) >. , N >. e. CPreHilOLD <-> ( <. <. G , ( .sOLD ` U ) >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 14 | 9 10 11 13 | mp3an |  |-  ( <. <. G , ( .sOLD ` U ) >. , N >. e. CPreHilOLD <-> ( <. <. G , ( .sOLD ` U ) >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 15 | 1 2 6 3 | nvmval |  |-  ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( x M y ) = ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) | 
						
							| 16 | 15 | 3expa |  |-  ( ( ( U e. NrmCVec /\ x e. X ) /\ y e. X ) -> ( x M y ) = ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( U e. NrmCVec /\ x e. X ) /\ y e. X ) -> ( N ` ( x M y ) ) = ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( ( U e. NrmCVec /\ x e. X ) /\ y e. X ) -> ( ( N ` ( x M y ) ) ^ 2 ) = ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( U e. NrmCVec /\ x e. X ) /\ y e. X ) -> ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( ( ( U e. NrmCVec /\ x e. X ) /\ y e. X ) -> ( ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 21 | 20 | ralbidva |  |-  ( ( U e. NrmCVec /\ x e. X ) -> ( A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 22 | 21 | ralbidva |  |-  ( U e. NrmCVec -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 23 | 22 | pm5.32i |  |-  ( ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 24 |  | eleq1 |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( U e. NrmCVec <-> <. <. G , ( .sOLD ` U ) >. , N >. e. NrmCVec ) ) | 
						
							| 25 | 24 | anbi1d |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) <-> ( <. <. G , ( .sOLD ` U ) >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 26 | 23 25 | bitr2id |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( ( <. <. G , ( .sOLD ` U ) >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 ( .sOLD ` U ) y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 27 | 14 26 | bitrid |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( <. <. G , ( .sOLD ` U ) >. , N >. e. CPreHilOLD <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 28 | 8 27 | bitrd |  |-  ( U = <. <. G , ( .sOLD ` U ) >. , N >. -> ( U e. CPreHilOLD <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 29 | 7 28 | syl |  |-  ( U e. NrmCVec -> ( U e. CPreHilOLD <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) | 
						
							| 30 | 29 | bianabs |  |-  ( U e. NrmCVec -> ( U e. CPreHilOLD <-> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) | 
						
							| 31 | 5 30 | biadanii |  |-  ( U e. CPreHilOLD <-> ( U e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x M y ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) |