| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgmulc2.1 |
|- ( ph -> C e. CC ) |
| 2 |
|
itgmulc2.2 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 3 |
|
itgmulc2.3 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
| 4 |
|
itgmulc2.4 |
|- ( ph -> C e. RR ) |
| 5 |
|
itgmulc2.5 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 6 |
|
itgmulc2.6 |
|- ( ph -> 0 <_ C ) |
| 7 |
|
itgmulc2.7 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
| 8 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
| 9 |
5 7 8
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 10 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 11 |
10
|
a1i |
|- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 12 |
9 11
|
ifclda |
|- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 14 |
13
|
fmpttd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 15 |
5 7
|
iblpos |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| 16 |
3 15
|
mpbid |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
| 17 |
16
|
simprd |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) |
| 18 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
| 19 |
4 6 18
|
sylanbrc |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 20 |
14 17 19
|
itg2mulc |
|- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
| 21 |
|
reex |
|- RR e. _V |
| 22 |
21
|
a1i |
|- ( ph -> RR e. _V ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ x e. RR ) -> C e. RR ) |
| 24 |
|
fconstmpt |
|- ( RR X. { C } ) = ( x e. RR |-> C ) |
| 25 |
24
|
a1i |
|- ( ph -> ( RR X. { C } ) = ( x e. RR |-> C ) ) |
| 26 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 27 |
22 23 13 25 26
|
offval2 |
|- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) ) |
| 28 |
|
ovif2 |
|- ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , ( C x. 0 ) ) |
| 29 |
1
|
mul01d |
|- ( ph -> ( C x. 0 ) = 0 ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( C x. 0 ) = 0 ) |
| 31 |
30
|
ifeq2d |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , ( C x. B ) , ( C x. 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
| 32 |
28 31
|
eqtrid |
|- ( ( ph /\ x e. RR ) -> ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
| 34 |
27 33
|
eqtrd |
|- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
| 35 |
34
|
fveq2d |
|- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 36 |
20 35
|
eqtr3d |
|- ( ph -> ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 37 |
5 3 7
|
itgposval |
|- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( C x. S. A B _d x ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
| 39 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
| 40 |
39 5
|
remulcld |
|- ( ( ph /\ x e. A ) -> ( C x. B ) e. RR ) |
| 41 |
1 2 3
|
iblmulc2 |
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. L^1 ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ x e. A ) -> 0 <_ C ) |
| 43 |
39 5 42 7
|
mulge0d |
|- ( ( ph /\ x e. A ) -> 0 <_ ( C x. B ) ) |
| 44 |
40 41 43
|
itgposval |
|- ( ph -> S. A ( C x. B ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
| 45 |
36 38 44
|
3eqtr4d |
|- ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |