Description: Lemma for itgmulc2 : positive real case. (Contributed by Mario Carneiro, 25-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itgmulc2.1 | |
|
itgmulc2.2 | |
||
itgmulc2.3 | |
||
itgmulc2.4 | |
||
itgmulc2.5 | |
||
itgmulc2.6 | |
||
itgmulc2.7 | |
||
Assertion | itgmulc2lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgmulc2.1 | |
|
2 | itgmulc2.2 | |
|
3 | itgmulc2.3 | |
|
4 | itgmulc2.4 | |
|
5 | itgmulc2.5 | |
|
6 | itgmulc2.6 | |
|
7 | itgmulc2.7 | |
|
8 | elrege0 | |
|
9 | 5 7 8 | sylanbrc | |
10 | 0e0icopnf | |
|
11 | 10 | a1i | |
12 | 9 11 | ifclda | |
13 | 12 | adantr | |
14 | 13 | fmpttd | |
15 | 5 7 | iblpos | |
16 | 3 15 | mpbid | |
17 | 16 | simprd | |
18 | elrege0 | |
|
19 | 4 6 18 | sylanbrc | |
20 | 14 17 19 | itg2mulc | |
21 | reex | |
|
22 | 21 | a1i | |
23 | 4 | adantr | |
24 | fconstmpt | |
|
25 | 24 | a1i | |
26 | eqidd | |
|
27 | 22 23 13 25 26 | offval2 | |
28 | ovif2 | |
|
29 | 1 | mul01d | |
30 | 29 | adantr | |
31 | 30 | ifeq2d | |
32 | 28 31 | eqtrid | |
33 | 32 | mpteq2dva | |
34 | 27 33 | eqtrd | |
35 | 34 | fveq2d | |
36 | 20 35 | eqtr3d | |
37 | 5 3 7 | itgposval | |
38 | 37 | oveq2d | |
39 | 4 | adantr | |
40 | 39 5 | remulcld | |
41 | 1 2 3 | iblmulc2 | |
42 | 6 | adantr | |
43 | 39 5 42 7 | mulge0d | |
44 | 40 41 43 | itgposval | |
45 | 36 38 44 | 3eqtr4d | |