Metamath Proof Explorer


Theorem itgmulc2lem1

Description: Lemma for itgmulc2 : positive real case. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgmulc2.1 φC
itgmulc2.2 φxABV
itgmulc2.3 φxAB𝐿1
itgmulc2.4 φC
itgmulc2.5 φxAB
itgmulc2.6 φ0C
itgmulc2.7 φxA0B
Assertion itgmulc2lem1 φCABdx=ACBdx

Proof

Step Hyp Ref Expression
1 itgmulc2.1 φC
2 itgmulc2.2 φxABV
3 itgmulc2.3 φxAB𝐿1
4 itgmulc2.4 φC
5 itgmulc2.5 φxAB
6 itgmulc2.6 φ0C
7 itgmulc2.7 φxA0B
8 elrege0 B0+∞B0B
9 5 7 8 sylanbrc φxAB0+∞
10 0e0icopnf 00+∞
11 10 a1i φ¬xA00+∞
12 9 11 ifclda φifxAB00+∞
13 12 adantr φxifxAB00+∞
14 13 fmpttd φxifxAB0:0+∞
15 5 7 iblpos φxAB𝐿1xABMblFn2xifxAB0
16 3 15 mpbid φxABMblFn2xifxAB0
17 16 simprd φ2xifxAB0
18 elrege0 C0+∞C0C
19 4 6 18 sylanbrc φC0+∞
20 14 17 19 itg2mulc φ2×C×fxifxAB0=C2xifxAB0
21 reex V
22 21 a1i φV
23 4 adantr φxC
24 fconstmpt ×C=xC
25 24 a1i φ×C=xC
26 eqidd φxifxAB0=xifxAB0
27 22 23 13 25 26 offval2 φ×C×fxifxAB0=xCifxAB0
28 ovif2 CifxAB0=ifxACBC0
29 1 mul01d φC0=0
30 29 adantr φxC0=0
31 30 ifeq2d φxifxACBC0=ifxACB0
32 28 31 eqtrid φxCifxAB0=ifxACB0
33 32 mpteq2dva φxCifxAB0=xifxACB0
34 27 33 eqtrd φ×C×fxifxAB0=xifxACB0
35 34 fveq2d φ2×C×fxifxAB0=2xifxACB0
36 20 35 eqtr3d φC2xifxAB0=2xifxACB0
37 5 3 7 itgposval φABdx=2xifxAB0
38 37 oveq2d φCABdx=C2xifxAB0
39 4 adantr φxAC
40 39 5 remulcld φxACB
41 1 2 3 iblmulc2 φxACB𝐿1
42 6 adantr φxA0C
43 39 5 42 7 mulge0d φxA0CB
44 40 41 43 itgposval φACBdx=2xifxACB0
45 36 38 44 3eqtr4d φCABdx=ACBdx