| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itsclc0.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | itsclc0.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | itsclc0.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | itsclc0.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 |  | itsclc0.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 6 |  | itsclc0.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 7 |  | itsclc0.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 8 |  | itsclinecirc0.l |  |-  L = ( LineM ` E ) | 
						
							| 9 |  | itsclinecirc0.a |  |-  A = ( ( Y ` 2 ) - ( Z ` 2 ) ) | 
						
							| 10 |  | itsclinecirc0.b |  |-  B = ( ( Z ` 1 ) - ( Y ` 1 ) ) | 
						
							| 11 |  | itsclinecirc0.c |  |-  C = ( ( ( Y ` 2 ) x. ( Z ` 1 ) ) - ( ( Y ` 1 ) x. ( Z ` 2 ) ) ) | 
						
							| 12 | 1 2 3 8 9 10 11 | rrx2linest2 |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y L Z ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y L Z ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
							| 14 | 13 | eleq2d |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X e. ( Y L Z ) <-> X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) | 
						
							| 15 | 14 | anbi2d |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. ( Y L Z ) ) <-> ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) ) | 
						
							| 16 | 1 3 | rrx2pyel |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y ` 2 ) e. RR ) | 
						
							| 18 | 1 3 | rrx2pyel |  |-  ( Z e. P -> ( Z ` 2 ) e. RR ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Z ` 2 ) e. RR ) | 
						
							| 20 | 17 19 | resubcld |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 2 ) - ( Z ` 2 ) ) e. RR ) | 
						
							| 21 | 9 20 | eqeltrid |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> A e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) | 
						
							| 23 | 1 3 | rrx2pxel |  |-  ( Z e. P -> ( Z ` 1 ) e. RR ) | 
						
							| 24 | 23 | 3ad2ant2 |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Z ` 1 ) e. RR ) | 
						
							| 25 | 1 3 | rrx2pxel |  |-  ( Y e. P -> ( Y ` 1 ) e. RR ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y ` 1 ) e. RR ) | 
						
							| 27 | 24 26 | resubcld |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Z ` 1 ) - ( Y ` 1 ) ) e. RR ) | 
						
							| 28 | 10 27 | eqeltrid |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> B e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) | 
						
							| 30 | 17 24 | remulcld |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 2 ) x. ( Z ` 1 ) ) e. RR ) | 
						
							| 31 | 26 19 | remulcld |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 1 ) x. ( Z ` 2 ) ) e. RR ) | 
						
							| 32 | 30 31 | resubcld |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( ( Y ` 2 ) x. ( Z ` 1 ) ) - ( ( Y ` 1 ) x. ( Z ` 2 ) ) ) e. RR ) | 
						
							| 33 | 11 32 | eqeltrid |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> C e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) | 
						
							| 35 | 1 3 10 9 | rrx2pnedifcoorneorr |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( B =/= 0 \/ A =/= 0 ) ) | 
						
							| 36 | 35 | orcomd |  |-  ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( A =/= 0 \/ B =/= 0 ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R e. RR+ /\ 0 <_ D ) ) | 
						
							| 39 |  | eqid |  |-  { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
							| 40 | 1 2 3 4 5 6 7 39 | itsclc0 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) | 
						
							| 41 | 22 29 34 37 38 40 | syl311anc |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) | 
						
							| 42 | 15 41 | sylbid |  |-  ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. ( Y L Z ) ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |