Step |
Hyp |
Ref |
Expression |
1 |
|
itsclc0.i |
|- I = { 1 , 2 } |
2 |
|
itsclc0.e |
|- E = ( RR^ ` I ) |
3 |
|
itsclc0.p |
|- P = ( RR ^m I ) |
4 |
|
itsclc0.s |
|- S = ( Sphere ` E ) |
5 |
|
itsclc0.0 |
|- .0. = ( I X. { 0 } ) |
6 |
|
itsclc0.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
7 |
|
itsclc0.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
8 |
|
itsclinecirc0.l |
|- L = ( LineM ` E ) |
9 |
|
itsclinecirc0.a |
|- A = ( ( Y ` 2 ) - ( Z ` 2 ) ) |
10 |
|
itsclinecirc0.b |
|- B = ( ( Z ` 1 ) - ( Y ` 1 ) ) |
11 |
|
itsclinecirc0.c |
|- C = ( ( ( Y ` 2 ) x. ( Z ` 1 ) ) - ( ( Y ` 1 ) x. ( Z ` 2 ) ) ) |
12 |
1 2 3 8 9 10 11
|
rrx2linest2 |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y L Z ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
13 |
12
|
adantr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y L Z ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
14 |
13
|
eleq2d |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X e. ( Y L Z ) <-> X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) |
15 |
14
|
anbi2d |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. ( Y L Z ) ) <-> ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) ) |
16 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
17 |
16
|
3ad2ant1 |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y ` 2 ) e. RR ) |
18 |
1 3
|
rrx2pyel |
|- ( Z e. P -> ( Z ` 2 ) e. RR ) |
19 |
18
|
3ad2ant2 |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Z ` 2 ) e. RR ) |
20 |
17 19
|
resubcld |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 2 ) - ( Z ` 2 ) ) e. RR ) |
21 |
9 20
|
eqeltrid |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> A e. RR ) |
22 |
21
|
adantr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) |
23 |
1 3
|
rrx2pxel |
|- ( Z e. P -> ( Z ` 1 ) e. RR ) |
24 |
23
|
3ad2ant2 |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Z ` 1 ) e. RR ) |
25 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
26 |
25
|
3ad2ant1 |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( Y ` 1 ) e. RR ) |
27 |
24 26
|
resubcld |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Z ` 1 ) - ( Y ` 1 ) ) e. RR ) |
28 |
10 27
|
eqeltrid |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> B e. RR ) |
29 |
28
|
adantr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
30 |
17 24
|
remulcld |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 2 ) x. ( Z ` 1 ) ) e. RR ) |
31 |
26 19
|
remulcld |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( Y ` 1 ) x. ( Z ` 2 ) ) e. RR ) |
32 |
30 31
|
resubcld |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( ( ( Y ` 2 ) x. ( Z ` 1 ) ) - ( ( Y ` 1 ) x. ( Z ` 2 ) ) ) e. RR ) |
33 |
11 32
|
eqeltrid |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> C e. RR ) |
34 |
33
|
adantr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) |
35 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( B =/= 0 \/ A =/= 0 ) ) |
36 |
35
|
orcomd |
|- ( ( Y e. P /\ Z e. P /\ Y =/= Z ) -> ( A =/= 0 \/ B =/= 0 ) ) |
37 |
36
|
adantr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
38 |
|
simpr |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R e. RR+ /\ 0 <_ D ) ) |
39 |
|
eqid |
|- { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
40 |
1 2 3 4 5 6 7 39
|
itsclc0 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |
41 |
22 29 34 37 38 40
|
syl311anc |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |
42 |
15 41
|
sylbid |
|- ( ( ( Y e. P /\ Z e. P /\ Y =/= Z ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. ( Y L Z ) ) -> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |