Step |
Hyp |
Ref |
Expression |
1 |
|
itsclc0.i |
|
2 |
|
itsclc0.e |
|
3 |
|
itsclc0.p |
|
4 |
|
itsclc0.s |
|
5 |
|
itsclc0.0 |
|
6 |
|
itsclc0.q |
|
7 |
|
itsclc0.d |
|
8 |
|
itsclinecirc0.l |
|
9 |
|
itsclinecirc0.a |
|
10 |
|
itsclinecirc0.b |
|
11 |
|
itsclinecirc0.c |
|
12 |
1 2 3 8 9 10 11
|
rrx2linest2 |
|
13 |
12
|
adantr |
|
14 |
13
|
eleq2d |
|
15 |
14
|
anbi2d |
|
16 |
1 3
|
rrx2pyel |
|
17 |
16
|
3ad2ant1 |
|
18 |
1 3
|
rrx2pyel |
|
19 |
18
|
3ad2ant2 |
|
20 |
17 19
|
resubcld |
|
21 |
9 20
|
eqeltrid |
|
22 |
21
|
adantr |
|
23 |
1 3
|
rrx2pxel |
|
24 |
23
|
3ad2ant2 |
|
25 |
1 3
|
rrx2pxel |
|
26 |
25
|
3ad2ant1 |
|
27 |
24 26
|
resubcld |
|
28 |
10 27
|
eqeltrid |
|
29 |
28
|
adantr |
|
30 |
17 24
|
remulcld |
|
31 |
26 19
|
remulcld |
|
32 |
30 31
|
resubcld |
|
33 |
11 32
|
eqeltrid |
|
34 |
33
|
adantr |
|
35 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|
36 |
35
|
orcomd |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
|
eqid |
|
40 |
1 2 3 4 5 6 7 39
|
itsclc0 |
|
41 |
22 29 34 37 38 40
|
syl311anc |
|
42 |
15 41
|
sylbid |
|