Step |
Hyp |
Ref |
Expression |
1 |
|
itsclinecirc0b.i |
|
2 |
|
itsclinecirc0b.e |
|
3 |
|
itsclinecirc0b.p |
|
4 |
|
itsclinecirc0b.s |
|
5 |
|
itsclinecirc0b.0 |
|
6 |
|
itsclinecirc0b.q |
|
7 |
|
itsclinecirc0b.d |
|
8 |
|
itsclinecirc0b.l |
|
9 |
|
itsclinecirc0b.a |
|
10 |
|
itsclinecirc0b.b |
|
11 |
|
itsclinecirc0b.c |
|
12 |
|
eqid |
|
13 |
1 2 3 8 10 12 11
|
rrx2linest |
|
14 |
13
|
adantr |
|
15 |
|
eqcom |
|
16 |
1 3
|
rrx2pxel |
|
17 |
16
|
adantl |
|
18 |
1 3
|
rrx2pxel |
|
19 |
18
|
adantr |
|
20 |
17 19
|
resubcld |
|
21 |
10 20
|
eqeltrid |
|
22 |
21
|
3adant3 |
|
23 |
22
|
ad2antrr |
|
24 |
1 3
|
rrx2pyel |
|
25 |
24
|
adantl |
|
26 |
23 25
|
remulcld |
|
27 |
26
|
recnd |
|
28 |
1 3
|
rrx2pyel |
|
29 |
28
|
adantl |
|
30 |
1 3
|
rrx2pyel |
|
31 |
30
|
adantr |
|
32 |
29 31
|
resubcld |
|
33 |
32
|
3adant3 |
|
34 |
33
|
ad2antrr |
|
35 |
1 3
|
rrx2pxel |
|
36 |
35
|
adantl |
|
37 |
34 36
|
remulcld |
|
38 |
37
|
recnd |
|
39 |
31 17
|
remulcld |
|
40 |
19 29
|
remulcld |
|
41 |
39 40
|
resubcld |
|
42 |
11 41
|
eqeltrid |
|
43 |
42
|
recnd |
|
44 |
43
|
3adant3 |
|
45 |
44
|
ad2antrr |
|
46 |
27 38 45
|
subaddd |
|
47 |
15 46
|
bitr4id |
|
48 |
31 29
|
resubcld |
|
49 |
9 48
|
eqeltrid |
|
50 |
49
|
3adant3 |
|
51 |
50
|
ad2antrr |
|
52 |
51 36
|
remulcld |
|
53 |
52
|
recnd |
|
54 |
53 27
|
addcomd |
|
55 |
29
|
3adant3 |
|
56 |
55
|
ad2antrr |
|
57 |
56
|
recnd |
|
58 |
31
|
3adant3 |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
recnd |
|
61 |
57 60
|
negsubdi2d |
|
62 |
9 61
|
eqtr4id |
|
63 |
62
|
oveq1d |
|
64 |
32
|
recnd |
|
65 |
64
|
3adant3 |
|
66 |
65
|
ad2antrr |
|
67 |
36
|
recnd |
|
68 |
66 67
|
mulneg1d |
|
69 |
63 68
|
eqtr2d |
|
70 |
69
|
oveq2d |
|
71 |
27 38
|
negsubd |
|
72 |
54 70 71
|
3eqtr2rd |
|
73 |
72
|
eqeq1d |
|
74 |
47 73
|
bitrd |
|
75 |
74
|
rabbidva |
|
76 |
14 75
|
eqtrd |
|
77 |
76
|
eleq2d |
|
78 |
77
|
anbi2d |
|
79 |
50
|
adantr |
|
80 |
22
|
adantr |
|
81 |
42
|
3adant3 |
|
82 |
81
|
adantr |
|
83 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|
84 |
83
|
orcomd |
|
85 |
84
|
adantr |
|
86 |
|
simpr |
|
87 |
|
eqid |
|
88 |
1 2 3 4 5 6 7 87
|
itsclc0b |
|
89 |
79 80 82 85 86 88
|
syl311anc |
|
90 |
78 89
|
bitrd |
|