| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclinecirc0b.i |
|- I = { 1 , 2 } |
| 2 |
|
itsclinecirc0b.e |
|- E = ( RR^ ` I ) |
| 3 |
|
itsclinecirc0b.p |
|- P = ( RR ^m I ) |
| 4 |
|
itsclinecirc0b.s |
|- S = ( Sphere ` E ) |
| 5 |
|
itsclinecirc0b.0 |
|- .0. = ( I X. { 0 } ) |
| 6 |
|
itsclinecirc0b.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 7 |
|
itsclinecirc0b.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 8 |
|
itsclinecirc0b.l |
|- L = ( LineM ` E ) |
| 9 |
|
itsclinecirc0b.a |
|- A = ( ( X ` 2 ) - ( Y ` 2 ) ) |
| 10 |
|
itsclinecirc0b.b |
|- B = ( ( Y ` 1 ) - ( X ` 1 ) ) |
| 11 |
|
itsclinecirc0b.c |
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
| 12 |
|
eqid |
|- ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) |
| 13 |
1 2 3 8 10 12 11
|
rrx2linest |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } ) |
| 14 |
13
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X L Y ) = { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } ) |
| 15 |
|
eqcom |
|- ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) ) |
| 16 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
| 17 |
16
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR ) |
| 18 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
| 19 |
18
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR ) |
| 20 |
17 19
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR ) |
| 21 |
10 20
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> B e. RR ) |
| 22 |
21
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> B e. RR ) |
| 24 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 25 |
24
|
adantl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 2 ) e. RR ) |
| 26 |
23 25
|
remulcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. RR ) |
| 27 |
26
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) |
| 28 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
| 29 |
28
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR ) |
| 30 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
| 31 |
30
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR ) |
| 32 |
29 31
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 33 |
32
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 35 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 36 |
35
|
adantl |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 1 ) e. RR ) |
| 37 |
34 36
|
remulcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. RR ) |
| 38 |
37
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. CC ) |
| 39 |
31 17
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR ) |
| 40 |
19 29
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR ) |
| 41 |
39 40
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR ) |
| 42 |
11 41
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> C e. RR ) |
| 43 |
42
|
recnd |
|- ( ( X e. P /\ Y e. P ) -> C e. CC ) |
| 44 |
43
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. CC ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> C e. CC ) |
| 46 |
27 38 45
|
subaddd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) ) ) |
| 47 |
15 46
|
bitr4id |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C ) ) |
| 48 |
31 29
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR ) |
| 49 |
9 48
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> A e. RR ) |
| 50 |
49
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> A e. RR ) |
| 52 |
51 36
|
remulcld |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. RR ) |
| 53 |
52
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) |
| 54 |
53 27
|
addcomd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) ) |
| 55 |
29
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. RR ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( Y ` 2 ) e. RR ) |
| 57 |
56
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( Y ` 2 ) e. CC ) |
| 58 |
31
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. RR ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( X ` 2 ) e. RR ) |
| 60 |
59
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( X ` 2 ) e. CC ) |
| 61 |
57 60
|
negsubdi2d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> -u ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( X ` 2 ) - ( Y ` 2 ) ) ) |
| 62 |
9 61
|
eqtr4id |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> A = -u ( ( Y ` 2 ) - ( X ` 2 ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) |
| 64 |
32
|
recnd |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 65 |
64
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 67 |
36
|
recnd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 1 ) e. CC ) |
| 68 |
66 67
|
mulneg1d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) |
| 69 |
63 68
|
eqtr2d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( A x. ( p ` 1 ) ) ) |
| 70 |
69
|
oveq2d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) ) |
| 71 |
27 38
|
negsubd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) ) |
| 72 |
54 70 71
|
3eqtr2rd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) ) |
| 73 |
72
|
eqeq1d |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
| 74 |
47 73
|
bitrd |
|- ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
| 75 |
74
|
rabbidva |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
| 76 |
14 75
|
eqtrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X L Y ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
| 77 |
76
|
eleq2d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Z e. ( X L Y ) <-> Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) |
| 78 |
77
|
anbi2d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. ( X L Y ) ) <-> ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) ) |
| 79 |
50
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) |
| 80 |
22
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
| 81 |
42
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR ) |
| 82 |
81
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) |
| 83 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) ) |
| 84 |
83
|
orcomd |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 85 |
84
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 86 |
|
simpr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R e. RR+ /\ 0 <_ D ) ) |
| 87 |
|
eqid |
|- { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
| 88 |
1 2 3 4 5 6 7 87
|
itsclc0b |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |
| 89 |
79 80 82 85 86 88
|
syl311anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |
| 90 |
78 89
|
bitrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. ( X L Y ) ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |