| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itsclc0.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | itsclc0.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | itsclc0.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | itsclc0.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 |  | itsclc0.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 6 |  | itsclc0.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 7 |  | itsclc0.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 8 |  | itsclc0.l |  |-  L = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
							| 9 |  | rprege0 |  |-  ( R e. RR+ -> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 10 |  | elrege0 |  |-  ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( R e. RR+ -> R e. ( 0 [,) +oo ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. ( 0 [,) +oo ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. ( 0 [,) +oo ) ) | 
						
							| 14 |  | eqid |  |-  { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } | 
						
							| 15 | 1 2 3 4 5 14 | 2sphere0 |  |-  ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) | 
						
							| 16 | 15 | eleq2d |  |-  ( R e. ( 0 [,) +oo ) -> ( X e. ( .0. S R ) <-> X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) ) | 
						
							| 17 | 13 16 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X e. ( .0. S R ) <-> X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) ) | 
						
							| 18 |  | fveq1 |  |-  ( p = X -> ( p ` 1 ) = ( X ` 1 ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( p = X -> ( A x. ( p ` 1 ) ) = ( A x. ( X ` 1 ) ) ) | 
						
							| 20 |  | fveq1 |  |-  ( p = X -> ( p ` 2 ) = ( X ` 2 ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( p = X -> ( B x. ( p ` 2 ) ) = ( B x. ( X ` 2 ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( p = X -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) ) | 
						
							| 23 | 22 | eqeq1d |  |-  ( p = X -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) | 
						
							| 24 | 23 8 | elrab2 |  |-  ( X e. L <-> ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) | 
						
							| 25 | 24 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X e. L <-> ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) ) | 
						
							| 26 | 17 25 | anbi12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. L ) <-> ( X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) ) ) | 
						
							| 27 | 18 | oveq1d |  |-  ( p = X -> ( ( p ` 1 ) ^ 2 ) = ( ( X ` 1 ) ^ 2 ) ) | 
						
							| 28 | 20 | oveq1d |  |-  ( p = X -> ( ( p ` 2 ) ^ 2 ) = ( ( X ` 2 ) ^ 2 ) ) | 
						
							| 29 | 27 28 | oveq12d |  |-  ( p = X -> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( p = X -> ( ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 31 | 30 | elrab |  |-  ( X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } <-> ( X e. P /\ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 32 | 31 | anbi1i |  |-  ( ( X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) <-> ( ( X e. P /\ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) ) | 
						
							| 33 |  | anandi |  |-  ( ( X e. P /\ ( ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) <-> ( ( X e. P /\ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) ) | 
						
							| 34 |  | simpl1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) | 
						
							| 35 |  | simpl2 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> ( A =/= 0 \/ B =/= 0 ) ) | 
						
							| 36 |  | simpl3l |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> R e. RR+ ) | 
						
							| 37 |  | simpl3r |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> 0 <_ D ) | 
						
							| 38 | 1 3 | rrx2pxel |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 39 | 1 3 | rrx2pyel |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 40 | 38 39 | jca |  |-  ( X e. P -> ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) | 
						
							| 42 | 36 37 41 | jca31 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> ( ( R e. RR+ /\ 0 <_ D ) /\ ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) ) | 
						
							| 43 | 6 7 | itsclc0xyqsolb |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) ) -> ( ( ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) <-> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) | 
						
							| 44 | 34 35 42 43 | syl21anc |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ X e. P ) -> ( ( ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) <-> ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) | 
						
							| 45 | 44 | pm5.32da |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. P /\ ( ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) <-> ( X e. P /\ ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
							| 46 | 33 45 | bitr3id |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( X e. P /\ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) <-> ( X e. P /\ ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
							| 47 | 32 46 | bitrid |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } /\ ( X e. P /\ ( ( A x. ( X ` 1 ) ) + ( B x. ( X ` 2 ) ) ) = C ) ) <-> ( X e. P /\ ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
							| 48 | 26 47 | bitrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X e. ( .0. S R ) /\ X e. L ) <-> ( X e. P /\ ( ( ( X ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( X ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( X ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |