Step |
Hyp |
Ref |
Expression |
1 |
|
itsclinecirc0b.i |
|- I = { 1 , 2 } |
2 |
|
itsclinecirc0b.e |
|- E = ( RR^ ` I ) |
3 |
|
itsclinecirc0b.p |
|- P = ( RR ^m I ) |
4 |
|
itsclinecirc0b.s |
|- S = ( Sphere ` E ) |
5 |
|
itsclinecirc0b.0 |
|- .0. = ( I X. { 0 } ) |
6 |
|
itsclinecirc0b.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
7 |
|
itsclinecirc0b.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
8 |
|
itsclinecirc0b.l |
|- L = ( LineM ` E ) |
9 |
|
itsclinecirc0b.a |
|- A = ( ( X ` 2 ) - ( Y ` 2 ) ) |
10 |
|
itsclinecirc0b.b |
|- B = ( ( Y ` 1 ) - ( X ` 1 ) ) |
11 |
|
itsclinecirc0b.c |
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
12 |
|
elin |
|- ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
itsclinecirc0b |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |
14 |
12 13
|
syl5bb |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) |
15 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
16 |
15
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR ) |
17 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
18 |
17
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR ) |
19 |
16 18
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR ) |
20 |
9 19
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> A e. RR ) |
21 |
20
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR ) |
22 |
21
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) |
23 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
24 |
23
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR ) |
25 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
26 |
25
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR ) |
27 |
24 26
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR ) |
28 |
10 27
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> B e. RR ) |
29 |
28
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR ) |
30 |
29
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
31 |
16 24
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR ) |
32 |
26 18
|
remulcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR ) |
33 |
31 32
|
resubcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR ) |
34 |
11 33
|
eqeltrid |
|- ( ( X e. P /\ Y e. P ) -> C e. RR ) |
35 |
34
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR ) |
36 |
35
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) |
37 |
22 30 36
|
3jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
38 |
21 29 35
|
3jca |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
39 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
40 |
39
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
41 |
6 7
|
itsclc0lem3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) |
42 |
38 40 41
|
syl2an |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR ) |
43 |
|
simprr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 <_ D ) |
44 |
42 43
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( D e. RR /\ 0 <_ D ) ) |
45 |
20 28
|
jca |
|- ( ( X e. P /\ Y e. P ) -> ( A e. RR /\ B e. RR ) ) |
46 |
6
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
47 |
45 46
|
syl |
|- ( ( X e. P /\ Y e. P ) -> Q e. RR ) |
48 |
47
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q e. RR ) |
49 |
1 3 10 9
|
rrx2pnedifcoorneorr |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) ) |
50 |
49
|
orcomd |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) ) |
51 |
6
|
resum2sqorgt0 |
|- ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
52 |
21 29 50 51
|
syl3anc |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> 0 < Q ) |
53 |
52
|
gt0ne0d |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q =/= 0 ) |
54 |
48 53
|
jca |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Q e. RR /\ Q =/= 0 ) ) |
55 |
54
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) ) |
56 |
|
itsclc0lem1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
57 |
37 44 55 56
|
syl3anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
58 |
30 22 36
|
3jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B e. RR /\ A e. RR /\ C e. RR ) ) |
59 |
48
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. RR ) |
60 |
53
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 ) |
61 |
59 60
|
jca |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) ) |
62 |
|
itsclc0lem2 |
|- ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
63 |
58 44 61 62
|
syl3anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
64 |
|
itsclc0lem2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
65 |
37 44 61 64
|
syl3anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
66 |
|
itsclc0lem1 |
|- ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
67 |
58 44 61 66
|
syl3anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) |
68 |
1 3
|
prelrrx2b |
|- ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) /\ ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) |
69 |
57 63 65 67 68
|
syl22anc |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) |
70 |
14 69
|
bitrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) |
71 |
70
|
eqrdv |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |