| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itsclinecirc0b.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | itsclinecirc0b.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | itsclinecirc0b.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | itsclinecirc0b.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 |  | itsclinecirc0b.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 6 |  | itsclinecirc0b.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 7 |  | itsclinecirc0b.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 8 |  | itsclinecirc0b.l |  |-  L = ( LineM ` E ) | 
						
							| 9 |  | itsclinecirc0b.a |  |-  A = ( ( X ` 2 ) - ( Y ` 2 ) ) | 
						
							| 10 |  | itsclinecirc0b.b |  |-  B = ( ( Y ` 1 ) - ( X ` 1 ) ) | 
						
							| 11 |  | itsclinecirc0b.c |  |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) | 
						
							| 12 |  | elin |  |-  ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 | itsclinecirc0b |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
							| 14 | 12 13 | bitrid |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
							| 15 | 1 3 | rrx2pyel |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR ) | 
						
							| 17 | 1 3 | rrx2pyel |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 18 | 17 | adantl |  |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR ) | 
						
							| 19 | 16 18 | resubcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR ) | 
						
							| 20 | 9 19 | eqeltrid |  |-  ( ( X e. P /\ Y e. P ) -> A e. RR ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) | 
						
							| 23 | 1 3 | rrx2pxel |  |-  ( Y e. P -> ( Y ` 1 ) e. RR ) | 
						
							| 24 | 23 | adantl |  |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR ) | 
						
							| 25 | 1 3 | rrx2pxel |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 26 | 25 | adantr |  |-  ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR ) | 
						
							| 27 | 24 26 | resubcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR ) | 
						
							| 28 | 10 27 | eqeltrid |  |-  ( ( X e. P /\ Y e. P ) -> B e. RR ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) | 
						
							| 31 | 16 24 | remulcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR ) | 
						
							| 32 | 26 18 | remulcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR ) | 
						
							| 33 | 31 32 | resubcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR ) | 
						
							| 34 | 11 33 | eqeltrid |  |-  ( ( X e. P /\ Y e. P ) -> C e. RR ) | 
						
							| 35 | 34 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) | 
						
							| 37 | 22 30 36 | 3jca |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) | 
						
							| 38 | 21 29 35 | 3jca |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) | 
						
							| 39 |  | rpre |  |-  ( R e. RR+ -> R e. RR ) | 
						
							| 40 | 39 | adantr |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) | 
						
							| 41 | 6 7 | itsclc0lem3 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) | 
						
							| 42 | 38 40 41 | syl2an |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR ) | 
						
							| 43 |  | simprr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 <_ D ) | 
						
							| 44 | 42 43 | jca |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( D e. RR /\ 0 <_ D ) ) | 
						
							| 45 | 20 28 | jca |  |-  ( ( X e. P /\ Y e. P ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 46 | 6 | resum2sqcl |  |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( X e. P /\ Y e. P ) -> Q e. RR ) | 
						
							| 48 | 47 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q e. RR ) | 
						
							| 49 | 1 3 10 9 | rrx2pnedifcoorneorr |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) ) | 
						
							| 50 | 49 | orcomd |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) ) | 
						
							| 51 | 6 | resum2sqorgt0 |  |-  ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) | 
						
							| 52 | 21 29 50 51 | syl3anc |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> 0 < Q ) | 
						
							| 53 | 52 | gt0ne0d |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q =/= 0 ) | 
						
							| 54 | 48 53 | jca |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Q e. RR /\ Q =/= 0 ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) ) | 
						
							| 56 |  | itsclc0lem1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 57 | 37 44 55 56 | syl3anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 58 | 30 22 36 | 3jca |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B e. RR /\ A e. RR /\ C e. RR ) ) | 
						
							| 59 | 48 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. RR ) | 
						
							| 60 | 53 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 ) | 
						
							| 61 | 59 60 | jca |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) ) | 
						
							| 62 |  | itsclc0lem2 |  |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 63 | 58 44 61 62 | syl3anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 64 |  | itsclc0lem2 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 65 | 37 44 61 64 | syl3anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 66 |  | itsclc0lem1 |  |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 67 | 58 44 61 66 | syl3anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) | 
						
							| 68 | 1 3 | prelrrx2b |  |-  ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) /\ ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
							| 69 | 57 63 65 67 68 | syl22anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
							| 70 | 14 69 | bitrd |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
							| 71 | 70 | eqrdv |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |