Metamath Proof Explorer


Theorem iunxpssiun1

Description: Provide an upper bound for the indexed union of cartesian products. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypothesis iunxpssiun1.1
|- ( ( ph /\ x e. A ) -> C C_ E )
Assertion iunxpssiun1
|- ( ph -> U_ x e. A ( B X. C ) C_ ( U_ x e. A B X. E ) )

Proof

Step Hyp Ref Expression
1 iunxpssiun1.1
 |-  ( ( ph /\ x e. A ) -> C C_ E )
2 ssiun2
 |-  ( x e. A -> B C_ U_ x e. A B )
3 2 adantl
 |-  ( ( ph /\ x e. A ) -> B C_ U_ x e. A B )
4 nfcv
 |-  F/_ y B
5 nfcsb1v
 |-  F/_ x [_ y / x ]_ B
6 csbeq1a
 |-  ( x = y -> B = [_ y / x ]_ B )
7 4 5 6 cbviun
 |-  U_ x e. A B = U_ y e. A [_ y / x ]_ B
8 3 7 sseqtrdi
 |-  ( ( ph /\ x e. A ) -> B C_ U_ y e. A [_ y / x ]_ B )
9 xpss12
 |-  ( ( B C_ U_ y e. A [_ y / x ]_ B /\ C C_ E ) -> ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) )
10 8 1 9 syl2anc
 |-  ( ( ph /\ x e. A ) -> ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) )
11 10 ralrimiva
 |-  ( ph -> A. x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) )
12 nfcv
 |-  F/_ x A
13 12 5 nfiun
 |-  F/_ x U_ y e. A [_ y / x ]_ B
14 nfcv
 |-  F/_ x E
15 13 14 nfxp
 |-  F/_ x ( U_ y e. A [_ y / x ]_ B X. E )
16 15 iunssf
 |-  ( U_ x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) <-> A. x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) )
17 11 16 sylibr
 |-  ( ph -> U_ x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) )
18 7 xpeq1i
 |-  ( U_ x e. A B X. E ) = ( U_ y e. A [_ y / x ]_ B X. E )
19 17 18 sseqtrrdi
 |-  ( ph -> U_ x e. A ( B X. C ) C_ ( U_ x e. A B X. E ) )