| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunxpssiun1.1 |
|- ( ( ph /\ x e. A ) -> C C_ E ) |
| 2 |
|
ssiun2 |
|- ( x e. A -> B C_ U_ x e. A B ) |
| 3 |
2
|
adantl |
|- ( ( ph /\ x e. A ) -> B C_ U_ x e. A B ) |
| 4 |
|
nfcv |
|- F/_ y B |
| 5 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 6 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 7 |
4 5 6
|
cbviun |
|- U_ x e. A B = U_ y e. A [_ y / x ]_ B |
| 8 |
3 7
|
sseqtrdi |
|- ( ( ph /\ x e. A ) -> B C_ U_ y e. A [_ y / x ]_ B ) |
| 9 |
|
xpss12 |
|- ( ( B C_ U_ y e. A [_ y / x ]_ B /\ C C_ E ) -> ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) ) |
| 10 |
8 1 9
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) ) |
| 11 |
10
|
ralrimiva |
|- ( ph -> A. x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) ) |
| 12 |
|
nfcv |
|- F/_ x A |
| 13 |
12 5
|
nfiun |
|- F/_ x U_ y e. A [_ y / x ]_ B |
| 14 |
|
nfcv |
|- F/_ x E |
| 15 |
13 14
|
nfxp |
|- F/_ x ( U_ y e. A [_ y / x ]_ B X. E ) |
| 16 |
15
|
iunssf |
|- ( U_ x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) <-> A. x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) ) |
| 17 |
11 16
|
sylibr |
|- ( ph -> U_ x e. A ( B X. C ) C_ ( U_ y e. A [_ y / x ]_ B X. E ) ) |
| 18 |
7
|
xpeq1i |
|- ( U_ x e. A B X. E ) = ( U_ y e. A [_ y / x ]_ B X. E ) |
| 19 |
17 18
|
sseqtrrdi |
|- ( ph -> U_ x e. A ( B X. C ) C_ ( U_ x e. A B X. E ) ) |