Metamath Proof Explorer


Theorem latmmdiN

Description: Lattice meet distributes over itself. ( inindi analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses olmass.b
|- B = ( Base ` K )
olmass.m
|- ./\ = ( meet ` K )
Assertion latmmdiN
|- ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y ./\ Z ) ) = ( ( X ./\ Y ) ./\ ( X ./\ Z ) ) )

Proof

Step Hyp Ref Expression
1 olmass.b
 |-  B = ( Base ` K )
2 olmass.m
 |-  ./\ = ( meet ` K )
3 ollat
 |-  ( K e. OL -> K e. Lat )
4 3 adantr
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat )
5 simpr1
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B )
6 1 2 latmidm
 |-  ( ( K e. Lat /\ X e. B ) -> ( X ./\ X ) = X )
7 4 5 6 syl2anc
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ X ) = X )
8 7 oveq1d
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ X ) ./\ ( Y ./\ Z ) ) = ( X ./\ ( Y ./\ Z ) ) )
9 simpl
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OL )
10 simpr2
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B )
11 simpr3
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B )
12 1 2 latm4
 |-  ( ( K e. OL /\ ( X e. B /\ X e. B ) /\ ( Y e. B /\ Z e. B ) ) -> ( ( X ./\ X ) ./\ ( Y ./\ Z ) ) = ( ( X ./\ Y ) ./\ ( X ./\ Z ) ) )
13 9 5 5 10 11 12 syl122anc
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ X ) ./\ ( Y ./\ Z ) ) = ( ( X ./\ Y ) ./\ ( X ./\ Z ) ) )
14 8 13 eqtr3d
 |-  ( ( K e. OL /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ ( Y ./\ Z ) ) = ( ( X ./\ Y ) ./\ ( X ./\ Z ) ) )