Metamath Proof Explorer


Theorem latmmdiN

Description: Lattice meet distributes over itself. ( inindi analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses olmass.b B = Base K
olmass.m ˙ = meet K
Assertion latmmdiN K OL X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z

Proof

Step Hyp Ref Expression
1 olmass.b B = Base K
2 olmass.m ˙ = meet K
3 ollat K OL K Lat
4 3 adantr K OL X B Y B Z B K Lat
5 simpr1 K OL X B Y B Z B X B
6 1 2 latmidm K Lat X B X ˙ X = X
7 4 5 6 syl2anc K OL X B Y B Z B X ˙ X = X
8 7 oveq1d K OL X B Y B Z B X ˙ X ˙ Y ˙ Z = X ˙ Y ˙ Z
9 simpl K OL X B Y B Z B K OL
10 simpr2 K OL X B Y B Z B Y B
11 simpr3 K OL X B Y B Z B Z B
12 1 2 latm4 K OL X B X B Y B Z B X ˙ X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z
13 9 5 5 10 11 12 syl122anc K OL X B Y B Z B X ˙ X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z
14 8 13 eqtr3d K OL X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ X ˙ Z