| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( Z C_ NN -> Z C_ NN ) | 
						
							| 2 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 3 | 1 2 | sstrdi |  |-  ( Z C_ NN -> Z C_ ZZ ) | 
						
							| 4 | 3 | adantr |  |-  ( ( Z C_ NN /\ Z e. Fin ) -> Z C_ ZZ ) | 
						
							| 5 |  | simpr |  |-  ( ( Z C_ NN /\ Z e. Fin ) -> Z e. Fin ) | 
						
							| 6 |  | 0nnn |  |-  -. 0 e. NN | 
						
							| 7 | 6 | nelir |  |-  0 e/ NN | 
						
							| 8 |  | ssel |  |-  ( Z C_ NN -> ( 0 e. Z -> 0 e. NN ) ) | 
						
							| 9 | 8 | nelcon3d |  |-  ( Z C_ NN -> ( 0 e/ NN -> 0 e/ Z ) ) | 
						
							| 10 | 7 9 | mpi |  |-  ( Z C_ NN -> 0 e/ Z ) | 
						
							| 11 | 10 | adantr |  |-  ( ( Z C_ NN /\ Z e. Fin ) -> 0 e/ Z ) | 
						
							| 12 |  | lcmfn0val |  |-  ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) = inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) | 
						
							| 13 | 4 5 11 12 | syl3anc |  |-  ( ( Z C_ NN /\ Z e. Fin ) -> ( _lcm ` Z ) = inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) |