Step |
Hyp |
Ref |
Expression |
1 |
|
ltflcei |
|- ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` B ) < A <-> B < -u ( |_ ` -u A ) ) ) |
2 |
1
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` B ) < A <-> B < -u ( |_ ` -u A ) ) ) |
3 |
2
|
notbid |
|- ( ( A e. RR /\ B e. RR ) -> ( -. ( |_ ` B ) < A <-> -. B < -u ( |_ ` -u A ) ) ) |
4 |
|
reflcl |
|- ( B e. RR -> ( |_ ` B ) e. RR ) |
5 |
|
lenlt |
|- ( ( A e. RR /\ ( |_ ` B ) e. RR ) -> ( A <_ ( |_ ` B ) <-> -. ( |_ ` B ) < A ) ) |
6 |
4 5
|
sylan2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ ( |_ ` B ) <-> -. ( |_ ` B ) < A ) ) |
7 |
|
ceicl |
|- ( A e. RR -> -u ( |_ ` -u A ) e. ZZ ) |
8 |
7
|
zred |
|- ( A e. RR -> -u ( |_ ` -u A ) e. RR ) |
9 |
|
lenlt |
|- ( ( -u ( |_ ` -u A ) e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> -. B < -u ( |_ ` -u A ) ) ) |
10 |
8 9
|
sylan |
|- ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> -. B < -u ( |_ ` -u A ) ) ) |
11 |
3 6 10
|
3bitr4rd |
|- ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> A <_ ( |_ ` B ) ) ) |