| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltflcei |  |-  ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` B ) < A <-> B < -u ( |_ ` -u A ) ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` B ) < A <-> B < -u ( |_ ` -u A ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( A e. RR /\ B e. RR ) -> ( -. ( |_ ` B ) < A <-> -. B < -u ( |_ ` -u A ) ) ) | 
						
							| 4 |  | reflcl |  |-  ( B e. RR -> ( |_ ` B ) e. RR ) | 
						
							| 5 |  | lenlt |  |-  ( ( A e. RR /\ ( |_ ` B ) e. RR ) -> ( A <_ ( |_ ` B ) <-> -. ( |_ ` B ) < A ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ ( |_ ` B ) <-> -. ( |_ ` B ) < A ) ) | 
						
							| 7 |  | ceicl |  |-  ( A e. RR -> -u ( |_ ` -u A ) e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( A e. RR -> -u ( |_ ` -u A ) e. RR ) | 
						
							| 9 |  | lenlt |  |-  ( ( -u ( |_ ` -u A ) e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> -. B < -u ( |_ ` -u A ) ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> -. B < -u ( |_ ` -u A ) ) ) | 
						
							| 11 | 3 6 10 | 3bitr4rd |  |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u A ) <_ B <-> A <_ ( |_ ` B ) ) ) |