Metamath Proof Explorer


Theorem ltflcei

Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion ltflcei
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> A < -u ( |_ ` -u B ) ) )

Proof

Step Hyp Ref Expression
1 flltp1
 |-  ( A e. RR -> A < ( ( |_ ` A ) + 1 ) )
2 1 ad3antrrr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < ( ( |_ ` A ) + 1 ) )
3 renegcl
 |-  ( B e. RR -> -u B e. RR )
4 flval
 |-  ( -u B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) )
5 3 4 syl
 |-  ( B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) )
6 5 ad3antlr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) )
7 fllep1
 |-  ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) )
8 7 adantl
 |-  ( ( B e. RR /\ A e. RR ) -> A <_ ( ( |_ ` A ) + 1 ) )
9 reflcl
 |-  ( A e. RR -> ( |_ ` A ) e. RR )
10 peano2re
 |-  ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR )
11 9 10 syl
 |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. RR )
12 11 adantl
 |-  ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` A ) + 1 ) e. RR )
13 letr
 |-  ( ( B e. RR /\ A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) )
14 12 13 mpd3an3
 |-  ( ( B e. RR /\ A e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) )
15 8 14 mpan2d
 |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> B <_ ( ( |_ ` A ) + 1 ) ) )
16 leneg
 |-  ( ( B e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) )
17 11 16 sylan2
 |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) )
18 15 17 sylibd
 |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) )
19 18 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) )
20 ltneg
 |-  ( ( ( |_ ` A ) e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) )
21 9 20 sylan
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) )
22 9 recnd
 |-  ( A e. RR -> ( |_ ` A ) e. CC )
23 ax-1cn
 |-  1 e. CC
24 negdi2
 |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` A ) + 1 ) = ( -u ( |_ ` A ) - 1 ) )
25 24 oveq1d
 |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( -u ( ( |_ ` A ) + 1 ) + 1 ) = ( ( -u ( |_ ` A ) - 1 ) + 1 ) )
26 negcl
 |-  ( ( |_ ` A ) e. CC -> -u ( |_ ` A ) e. CC )
27 npcan
 |-  ( ( -u ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) )
28 26 27 sylan
 |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) )
29 25 28 eqtr2d
 |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) )
30 22 23 29 sylancl
 |-  ( A e. RR -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) )
31 30 breq2d
 |-  ( A e. RR -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
32 31 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
33 21 32 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
34 33 biimpd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B -> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
35 19 34 anim12d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ ( |_ ` A ) < B ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) )
36 35 ancomsd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) < B /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) )
37 36 impl
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
38 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
39 38 peano2zd
 |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. ZZ )
40 39 znegcld
 |-  ( A e. RR -> -u ( ( |_ ` A ) + 1 ) e. ZZ )
41 rebtwnz
 |-  ( -u B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) )
42 3 41 syl
 |-  ( B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) )
43 breq1
 |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( x <_ -u B <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) )
44 oveq1
 |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( x + 1 ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) )
45 44 breq2d
 |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( -u B < ( x + 1 ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) )
46 43 45 anbi12d
 |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( ( x <_ -u B /\ -u B < ( x + 1 ) ) <-> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) )
47 46 riota2
 |-  ( ( -u ( ( |_ ` A ) + 1 ) e. ZZ /\ E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) )
48 40 42 47 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) )
49 48 ad2antrr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) )
50 37 49 mpbid
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) )
51 6 50 eqtrd
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) )
52 38 zcnd
 |-  ( A e. RR -> ( |_ ` A ) e. CC )
53 peano2cn
 |-  ( ( |_ ` A ) e. CC -> ( ( |_ ` A ) + 1 ) e. CC )
54 52 53 syl
 |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. CC )
55 3 flcld
 |-  ( B e. RR -> ( |_ ` -u B ) e. ZZ )
56 55 zcnd
 |-  ( B e. RR -> ( |_ ` -u B ) e. CC )
57 negcon2
 |-  ( ( ( ( |_ ` A ) + 1 ) e. CC /\ ( |_ ` -u B ) e. CC ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) )
58 54 56 57 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) )
59 58 ad2antrr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) )
60 51 59 mpbird
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) )
61 2 60 breqtrd
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < -u ( |_ ` -u B ) )
62 61 ex
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( B <_ A -> A < -u ( |_ ` -u B ) ) )
63 ltnle
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. B <_ A ) )
64 ceige
 |-  ( B e. RR -> B <_ -u ( |_ ` -u B ) )
65 64 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> B <_ -u ( |_ ` -u B ) )
66 ceicl
 |-  ( B e. RR -> -u ( |_ ` -u B ) e. ZZ )
67 66 zred
 |-  ( B e. RR -> -u ( |_ ` -u B ) e. RR )
68 67 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> -u ( |_ ` -u B ) e. RR )
69 ltletr
 |-  ( ( A e. RR /\ B e. RR /\ -u ( |_ ` -u B ) e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) )
70 68 69 mpd3an3
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) )
71 65 70 mpan2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A < -u ( |_ ` -u B ) ) )
72 63 71 sylbird
 |-  ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) )
73 72 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) )
74 62 73 pm2.61d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> A < -u ( |_ ` -u B ) )
75 flval
 |-  ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) )
76 75 ad3antrrr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) )
77 ceim1l
 |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) < B )
78 77 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) < B )
79 peano2rem
 |-  ( -u ( |_ ` -u B ) e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR )
80 67 79 syl
 |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR )
81 80 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) e. RR )
82 ltleletr
 |-  ( ( ( -u ( |_ ` -u B ) - 1 ) e. RR /\ B e. RR /\ A e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) )
83 82 3com13
 |-  ( ( A e. RR /\ B e. RR /\ ( -u ( |_ ` -u B ) - 1 ) e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) )
84 81 83 mpd3an3
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) )
85 78 84 mpand
 |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) )
86 66 zcnd
 |-  ( B e. RR -> -u ( |_ ` -u B ) e. CC )
87 npcan
 |-  ( ( -u ( |_ ` -u B ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) )
88 86 23 87 sylancl
 |-  ( B e. RR -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) )
89 88 breq2d
 |-  ( B e. RR -> ( A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) <-> A < -u ( |_ ` -u B ) ) )
90 89 biimprd
 |-  ( B e. RR -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) )
91 90 adantl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) )
92 85 91 anim12d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ A < -u ( |_ ` -u B ) ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) )
93 92 ancomsd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A < -u ( |_ ` -u B ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) )
94 93 impl
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) )
95 peano2zm
 |-  ( -u ( |_ ` -u B ) e. ZZ -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ )
96 66 95 syl
 |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ )
97 rebtwnz
 |-  ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) )
98 breq1
 |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x <_ A <-> ( -u ( |_ ` -u B ) - 1 ) <_ A ) )
99 oveq1
 |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x + 1 ) = ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) )
100 99 breq2d
 |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( A < ( x + 1 ) <-> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) )
101 98 100 anbi12d
 |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) )
102 101 riota2
 |-  ( ( ( -u ( |_ ` -u B ) - 1 ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) )
103 96 97 102 syl2anr
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) )
104 103 ad2antrr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) )
105 94 104 mpbid
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) )
106 76 105 eqtrd
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( -u ( |_ ` -u B ) - 1 ) )
107 77 ad3antlr
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) < B )
108 106 107 eqbrtrd
 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) < B )
109 108 ex
 |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( B <_ A -> ( |_ ` A ) < B ) )
110 flle
 |-  ( A e. RR -> ( |_ ` A ) <_ A )
111 110 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) <_ A )
112 9 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) e. RR )
113 lelttr
 |-  ( ( ( |_ ` A ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) )
114 113 3coml
 |-  ( ( A e. RR /\ B e. RR /\ ( |_ ` A ) e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) )
115 112 114 mpd3an3
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) )
116 111 115 mpand
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> ( |_ ` A ) < B ) )
117 63 116 sylbird
 |-  ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> ( |_ ` A ) < B ) )
118 117 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( -. B <_ A -> ( |_ ` A ) < B ) )
119 109 118 pm2.61d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( |_ ` A ) < B )
120 74 119 impbida
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> A < -u ( |_ ` -u B ) ) )