Step |
Hyp |
Ref |
Expression |
1 |
|
flltp1 |
|- ( A e. RR -> A < ( ( |_ ` A ) + 1 ) ) |
2 |
1
|
ad3antrrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < ( ( |_ ` A ) + 1 ) ) |
3 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
4 |
|
flval |
|- ( -u B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) |
5 |
3 4
|
syl |
|- ( B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) |
6 |
5
|
ad3antlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) |
7 |
|
fllep1 |
|- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) |
8 |
7
|
adantl |
|- ( ( B e. RR /\ A e. RR ) -> A <_ ( ( |_ ` A ) + 1 ) ) |
9 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
10 |
|
peano2re |
|- ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
11 |
9 10
|
syl |
|- ( A e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
12 |
11
|
adantl |
|- ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
13 |
|
letr |
|- ( ( B e. RR /\ A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) ) |
14 |
12 13
|
mpd3an3 |
|- ( ( B e. RR /\ A e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) ) |
15 |
8 14
|
mpan2d |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> B <_ ( ( |_ ` A ) + 1 ) ) ) |
16 |
|
leneg |
|- ( ( B e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) |
17 |
11 16
|
sylan2 |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) |
18 |
15 17
|
sylibd |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) |
19 |
18
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) |
20 |
|
ltneg |
|- ( ( ( |_ ` A ) e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) ) |
21 |
9 20
|
sylan |
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) ) |
22 |
9
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
23 |
|
ax-1cn |
|- 1 e. CC |
24 |
|
negdi2 |
|- ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` A ) + 1 ) = ( -u ( |_ ` A ) - 1 ) ) |
25 |
24
|
oveq1d |
|- ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( -u ( ( |_ ` A ) + 1 ) + 1 ) = ( ( -u ( |_ ` A ) - 1 ) + 1 ) ) |
26 |
|
negcl |
|- ( ( |_ ` A ) e. CC -> -u ( |_ ` A ) e. CC ) |
27 |
|
npcan |
|- ( ( -u ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) ) |
28 |
26 27
|
sylan |
|- ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) ) |
29 |
25 28
|
eqtr2d |
|- ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) |
30 |
22 23 29
|
sylancl |
|- ( A e. RR -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) |
31 |
30
|
breq2d |
|- ( A e. RR -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
32 |
31
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
33 |
21 32
|
bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
34 |
33
|
biimpd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B -> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
35 |
19 34
|
anim12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ ( |_ ` A ) < B ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) |
36 |
35
|
ancomsd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) < B /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) |
37 |
36
|
impl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
38 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
39 |
38
|
peano2zd |
|- ( A e. RR -> ( ( |_ ` A ) + 1 ) e. ZZ ) |
40 |
39
|
znegcld |
|- ( A e. RR -> -u ( ( |_ ` A ) + 1 ) e. ZZ ) |
41 |
|
rebtwnz |
|- ( -u B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) |
42 |
3 41
|
syl |
|- ( B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) |
43 |
|
breq1 |
|- ( x = -u ( ( |_ ` A ) + 1 ) -> ( x <_ -u B <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) |
44 |
|
oveq1 |
|- ( x = -u ( ( |_ ` A ) + 1 ) -> ( x + 1 ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) |
45 |
44
|
breq2d |
|- ( x = -u ( ( |_ ` A ) + 1 ) -> ( -u B < ( x + 1 ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) |
46 |
43 45
|
anbi12d |
|- ( x = -u ( ( |_ ` A ) + 1 ) -> ( ( x <_ -u B /\ -u B < ( x + 1 ) ) <-> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) |
47 |
46
|
riota2 |
|- ( ( -u ( ( |_ ` A ) + 1 ) e. ZZ /\ E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) |
48 |
40 42 47
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) |
50 |
37 49
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) |
51 |
6 50
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) |
52 |
38
|
zcnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
53 |
|
peano2cn |
|- ( ( |_ ` A ) e. CC -> ( ( |_ ` A ) + 1 ) e. CC ) |
54 |
52 53
|
syl |
|- ( A e. RR -> ( ( |_ ` A ) + 1 ) e. CC ) |
55 |
3
|
flcld |
|- ( B e. RR -> ( |_ ` -u B ) e. ZZ ) |
56 |
55
|
zcnd |
|- ( B e. RR -> ( |_ ` -u B ) e. CC ) |
57 |
|
negcon2 |
|- ( ( ( ( |_ ` A ) + 1 ) e. CC /\ ( |_ ` -u B ) e. CC ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) |
58 |
54 56 57
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) |
60 |
51 59
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) ) |
61 |
2 60
|
breqtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < -u ( |_ ` -u B ) ) |
62 |
61
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( B <_ A -> A < -u ( |_ ` -u B ) ) ) |
63 |
|
ltnle |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. B <_ A ) ) |
64 |
|
ceige |
|- ( B e. RR -> B <_ -u ( |_ ` -u B ) ) |
65 |
64
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> B <_ -u ( |_ ` -u B ) ) |
66 |
|
ceicl |
|- ( B e. RR -> -u ( |_ ` -u B ) e. ZZ ) |
67 |
66
|
zred |
|- ( B e. RR -> -u ( |_ ` -u B ) e. RR ) |
68 |
67
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> -u ( |_ ` -u B ) e. RR ) |
69 |
|
ltletr |
|- ( ( A e. RR /\ B e. RR /\ -u ( |_ ` -u B ) e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) ) |
70 |
68 69
|
mpd3an3 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) ) |
71 |
65 70
|
mpan2d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A < -u ( |_ ` -u B ) ) ) |
72 |
63 71
|
sylbird |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) ) |
73 |
72
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) ) |
74 |
62 73
|
pm2.61d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> A < -u ( |_ ` -u B ) ) |
75 |
|
flval |
|- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
76 |
75
|
ad3antrrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
77 |
|
ceim1l |
|- ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) < B ) |
78 |
77
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) < B ) |
79 |
|
peano2rem |
|- ( -u ( |_ ` -u B ) e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) |
80 |
67 79
|
syl |
|- ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) |
81 |
80
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) |
82 |
|
ltleletr |
|- ( ( ( -u ( |_ ` -u B ) - 1 ) e. RR /\ B e. RR /\ A e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) |
83 |
82
|
3com13 |
|- ( ( A e. RR /\ B e. RR /\ ( -u ( |_ ` -u B ) - 1 ) e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) |
84 |
81 83
|
mpd3an3 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) |
85 |
78 84
|
mpand |
|- ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) |
86 |
66
|
zcnd |
|- ( B e. RR -> -u ( |_ ` -u B ) e. CC ) |
87 |
|
npcan |
|- ( ( -u ( |_ ` -u B ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) ) |
88 |
86 23 87
|
sylancl |
|- ( B e. RR -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) ) |
89 |
88
|
breq2d |
|- ( B e. RR -> ( A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) <-> A < -u ( |_ ` -u B ) ) ) |
90 |
89
|
biimprd |
|- ( B e. RR -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) |
91 |
90
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) |
92 |
85 91
|
anim12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ A < -u ( |_ ` -u B ) ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) |
93 |
92
|
ancomsd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A < -u ( |_ ` -u B ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) |
94 |
93
|
impl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) |
95 |
|
peano2zm |
|- ( -u ( |_ ` -u B ) e. ZZ -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ ) |
96 |
66 95
|
syl |
|- ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ ) |
97 |
|
rebtwnz |
|- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
98 |
|
breq1 |
|- ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x <_ A <-> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) |
99 |
|
oveq1 |
|- ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x + 1 ) = ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) |
100 |
99
|
breq2d |
|- ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( A < ( x + 1 ) <-> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) |
101 |
98 100
|
anbi12d |
|- ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) |
102 |
101
|
riota2 |
|- ( ( ( -u ( |_ ` -u B ) - 1 ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) |
103 |
96 97 102
|
syl2anr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) |
104 |
103
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) |
105 |
94 104
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) |
106 |
76 105
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( -u ( |_ ` -u B ) - 1 ) ) |
107 |
77
|
ad3antlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) < B ) |
108 |
106 107
|
eqbrtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) < B ) |
109 |
108
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( B <_ A -> ( |_ ` A ) < B ) ) |
110 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
111 |
110
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) <_ A ) |
112 |
9
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) e. RR ) |
113 |
|
lelttr |
|- ( ( ( |_ ` A ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) |
114 |
113
|
3coml |
|- ( ( A e. RR /\ B e. RR /\ ( |_ ` A ) e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) |
115 |
112 114
|
mpd3an3 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) |
116 |
111 115
|
mpand |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> ( |_ ` A ) < B ) ) |
117 |
63 116
|
sylbird |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> ( |_ ` A ) < B ) ) |
118 |
117
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( -. B <_ A -> ( |_ ` A ) < B ) ) |
119 |
109 118
|
pm2.61d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( |_ ` A ) < B ) |
120 |
74 119
|
impbida |
|- ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> A < -u ( |_ ` -u B ) ) ) |