| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flltp1 |  |-  ( A e. RR -> A < ( ( |_ ` A ) + 1 ) ) | 
						
							| 2 | 1 | ad3antrrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < ( ( |_ ` A ) + 1 ) ) | 
						
							| 3 |  | renegcl |  |-  ( B e. RR -> -u B e. RR ) | 
						
							| 4 |  | flval |  |-  ( -u B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( B e. RR -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) | 
						
							| 6 | 5 | ad3antlr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) ) | 
						
							| 7 |  | fllep1 |  |-  ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( B e. RR /\ A e. RR ) -> A <_ ( ( |_ ` A ) + 1 ) ) | 
						
							| 9 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 10 |  | peano2re |  |-  ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) | 
						
							| 11 | 9 10 | syl |  |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) | 
						
							| 12 | 11 | adantl |  |-  ( ( B e. RR /\ A e. RR ) -> ( ( |_ ` A ) + 1 ) e. RR ) | 
						
							| 13 |  | letr |  |-  ( ( B e. RR /\ A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 14 | 12 13 | mpd3an3 |  |-  ( ( B e. RR /\ A e. RR ) -> ( ( B <_ A /\ A <_ ( ( |_ ` A ) + 1 ) ) -> B <_ ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 15 | 8 14 | mpan2d |  |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> B <_ ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 16 |  | leneg |  |-  ( ( B e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) | 
						
							| 17 | 11 16 | sylan2 |  |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ ( ( |_ ` A ) + 1 ) <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) | 
						
							| 18 | 15 17 | sylibd |  |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) | 
						
							| 19 | 18 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) | 
						
							| 20 |  | ltneg |  |-  ( ( ( |_ ` A ) e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) ) | 
						
							| 21 | 9 20 | sylan |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < -u ( |_ ` A ) ) ) | 
						
							| 22 | 9 | recnd |  |-  ( A e. RR -> ( |_ ` A ) e. CC ) | 
						
							| 23 |  | ax-1cn |  |-  1 e. CC | 
						
							| 24 |  | negdi2 |  |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( ( |_ ` A ) + 1 ) = ( -u ( |_ ` A ) - 1 ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( -u ( ( |_ ` A ) + 1 ) + 1 ) = ( ( -u ( |_ ` A ) - 1 ) + 1 ) ) | 
						
							| 26 |  | negcl |  |-  ( ( |_ ` A ) e. CC -> -u ( |_ ` A ) e. CC ) | 
						
							| 27 |  | npcan |  |-  ( ( -u ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` A ) - 1 ) + 1 ) = -u ( |_ ` A ) ) | 
						
							| 29 | 25 28 | eqtr2d |  |-  ( ( ( |_ ` A ) e. CC /\ 1 e. CC ) -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) | 
						
							| 30 | 22 23 29 | sylancl |  |-  ( A e. RR -> -u ( |_ ` A ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) | 
						
							| 31 | 30 | breq2d |  |-  ( A e. RR -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. RR /\ B e. RR ) -> ( -u B < -u ( |_ ` A ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 33 | 21 32 | bitrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 34 | 33 | biimpd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B -> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 35 | 19 34 | anim12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ ( |_ ` A ) < B ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) | 
						
							| 36 | 35 | ancomsd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) < B /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) | 
						
							| 37 | 36 | impl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 38 |  | flcl |  |-  ( A e. RR -> ( |_ ` A ) e. ZZ ) | 
						
							| 39 | 38 | peano2zd |  |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. ZZ ) | 
						
							| 40 | 39 | znegcld |  |-  ( A e. RR -> -u ( ( |_ ` A ) + 1 ) e. ZZ ) | 
						
							| 41 |  | rebtwnz |  |-  ( -u B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) | 
						
							| 42 | 3 41 | syl |  |-  ( B e. RR -> E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) | 
						
							| 43 |  | breq1 |  |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( x <_ -u B <-> -u ( ( |_ ` A ) + 1 ) <_ -u B ) ) | 
						
							| 44 |  | oveq1 |  |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( x + 1 ) = ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) | 
						
							| 45 | 44 | breq2d |  |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( -u B < ( x + 1 ) <-> -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) | 
						
							| 46 | 43 45 | anbi12d |  |-  ( x = -u ( ( |_ ` A ) + 1 ) -> ( ( x <_ -u B /\ -u B < ( x + 1 ) ) <-> ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) ) ) | 
						
							| 47 | 46 | riota2 |  |-  ( ( -u ( ( |_ ` A ) + 1 ) e. ZZ /\ E! x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 48 | 40 42 47 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( -u ( ( |_ ` A ) + 1 ) <_ -u B /\ -u B < ( -u ( ( |_ ` A ) + 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 50 | 37 49 | mpbid |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ -u B /\ -u B < ( x + 1 ) ) ) = -u ( ( |_ ` A ) + 1 ) ) | 
						
							| 51 | 6 50 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) | 
						
							| 52 | 38 | zcnd |  |-  ( A e. RR -> ( |_ ` A ) e. CC ) | 
						
							| 53 |  | peano2cn |  |-  ( ( |_ ` A ) e. CC -> ( ( |_ ` A ) + 1 ) e. CC ) | 
						
							| 54 | 52 53 | syl |  |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. CC ) | 
						
							| 55 | 3 | flcld |  |-  ( B e. RR -> ( |_ ` -u B ) e. ZZ ) | 
						
							| 56 | 55 | zcnd |  |-  ( B e. RR -> ( |_ ` -u B ) e. CC ) | 
						
							| 57 |  | negcon2 |  |-  ( ( ( ( |_ ` A ) + 1 ) e. CC /\ ( |_ ` -u B ) e. CC ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 58 | 54 56 57 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 59 | 58 | ad2antrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) <-> ( |_ ` -u B ) = -u ( ( |_ ` A ) + 1 ) ) ) | 
						
							| 60 | 51 59 | mpbird |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> ( ( |_ ` A ) + 1 ) = -u ( |_ ` -u B ) ) | 
						
							| 61 | 2 60 | breqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) /\ B <_ A ) -> A < -u ( |_ ` -u B ) ) | 
						
							| 62 | 61 | ex |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( B <_ A -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 63 |  | ltnle |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. B <_ A ) ) | 
						
							| 64 |  | ceige |  |-  ( B e. RR -> B <_ -u ( |_ ` -u B ) ) | 
						
							| 65 | 64 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> B <_ -u ( |_ ` -u B ) ) | 
						
							| 66 |  | ceicl |  |-  ( B e. RR -> -u ( |_ ` -u B ) e. ZZ ) | 
						
							| 67 | 66 | zred |  |-  ( B e. RR -> -u ( |_ ` -u B ) e. RR ) | 
						
							| 68 | 67 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> -u ( |_ ` -u B ) e. RR ) | 
						
							| 69 |  | ltletr |  |-  ( ( A e. RR /\ B e. RR /\ -u ( |_ ` -u B ) e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 70 | 68 69 | mpd3an3 |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A < B /\ B <_ -u ( |_ ` -u B ) ) -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 71 | 65 70 | mpan2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 72 | 63 71 | sylbird |  |-  ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> ( -. B <_ A -> A < -u ( |_ ` -u B ) ) ) | 
						
							| 74 | 62 73 | pm2.61d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( |_ ` A ) < B ) -> A < -u ( |_ ` -u B ) ) | 
						
							| 75 |  | flval |  |-  ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) | 
						
							| 76 | 75 | ad3antrrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) | 
						
							| 77 |  | ceim1l |  |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) < B ) | 
						
							| 78 | 77 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) < B ) | 
						
							| 79 |  | peano2rem |  |-  ( -u ( |_ ` -u B ) e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) | 
						
							| 80 | 67 79 | syl |  |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) | 
						
							| 81 | 80 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> ( -u ( |_ ` -u B ) - 1 ) e. RR ) | 
						
							| 82 |  | ltleletr |  |-  ( ( ( -u ( |_ ` -u B ) - 1 ) e. RR /\ B e. RR /\ A e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) | 
						
							| 83 | 82 | 3com13 |  |-  ( ( A e. RR /\ B e. RR /\ ( -u ( |_ ` -u B ) - 1 ) e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) | 
						
							| 84 | 81 83 | mpd3an3 |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) < B /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) | 
						
							| 85 | 78 84 | mpand |  |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ A -> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) | 
						
							| 86 | 66 | zcnd |  |-  ( B e. RR -> -u ( |_ ` -u B ) e. CC ) | 
						
							| 87 |  | npcan |  |-  ( ( -u ( |_ ` -u B ) e. CC /\ 1 e. CC ) -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) ) | 
						
							| 88 | 86 23 87 | sylancl |  |-  ( B e. RR -> ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) = -u ( |_ ` -u B ) ) | 
						
							| 89 | 88 | breq2d |  |-  ( B e. RR -> ( A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) <-> A < -u ( |_ ` -u B ) ) ) | 
						
							| 90 | 89 | biimprd |  |-  ( B e. RR -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) | 
						
							| 91 | 90 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < -u ( |_ ` -u B ) -> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) | 
						
							| 92 | 85 91 | anim12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( B <_ A /\ A < -u ( |_ ` -u B ) ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) | 
						
							| 93 | 92 | ancomsd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A < -u ( |_ ` -u B ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) | 
						
							| 94 | 93 | impl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) | 
						
							| 95 |  | peano2zm |  |-  ( -u ( |_ ` -u B ) e. ZZ -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ ) | 
						
							| 96 | 66 95 | syl |  |-  ( B e. RR -> ( -u ( |_ ` -u B ) - 1 ) e. ZZ ) | 
						
							| 97 |  | rebtwnz |  |-  ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) | 
						
							| 98 |  | breq1 |  |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x <_ A <-> ( -u ( |_ ` -u B ) - 1 ) <_ A ) ) | 
						
							| 99 |  | oveq1 |  |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( x + 1 ) = ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) | 
						
							| 100 | 99 | breq2d |  |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( A < ( x + 1 ) <-> A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) | 
						
							| 101 | 98 100 | anbi12d |  |-  ( x = ( -u ( |_ ` -u B ) - 1 ) -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) ) ) | 
						
							| 102 | 101 | riota2 |  |-  ( ( ( -u ( |_ ` -u B ) - 1 ) e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) | 
						
							| 103 | 96 97 102 | syl2anr |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) | 
						
							| 104 | 103 | ad2antrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( ( ( -u ( |_ ` -u B ) - 1 ) <_ A /\ A < ( ( -u ( |_ ` -u B ) - 1 ) + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) ) | 
						
							| 105 | 94 104 | mpbid |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = ( -u ( |_ ` -u B ) - 1 ) ) | 
						
							| 106 | 76 105 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) = ( -u ( |_ ` -u B ) - 1 ) ) | 
						
							| 107 | 77 | ad3antlr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( -u ( |_ ` -u B ) - 1 ) < B ) | 
						
							| 108 | 106 107 | eqbrtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) /\ B <_ A ) -> ( |_ ` A ) < B ) | 
						
							| 109 | 108 | ex |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( B <_ A -> ( |_ ` A ) < B ) ) | 
						
							| 110 |  | flle |  |-  ( A e. RR -> ( |_ ` A ) <_ A ) | 
						
							| 111 | 110 | adantr |  |-  ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) <_ A ) | 
						
							| 112 | 9 | adantr |  |-  ( ( A e. RR /\ B e. RR ) -> ( |_ ` A ) e. RR ) | 
						
							| 113 |  | lelttr |  |-  ( ( ( |_ ` A ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) | 
						
							| 114 | 113 | 3coml |  |-  ( ( A e. RR /\ B e. RR /\ ( |_ ` A ) e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) | 
						
							| 115 | 112 114 | mpd3an3 |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( |_ ` A ) <_ A /\ A < B ) -> ( |_ ` A ) < B ) ) | 
						
							| 116 | 111 115 | mpand |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> ( |_ ` A ) < B ) ) | 
						
							| 117 | 63 116 | sylbird |  |-  ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A -> ( |_ ` A ) < B ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( -. B <_ A -> ( |_ ` A ) < B ) ) | 
						
							| 119 | 109 118 | pm2.61d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < -u ( |_ ` -u B ) ) -> ( |_ ` A ) < B ) | 
						
							| 120 | 74 119 | impbida |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( |_ ` A ) < B <-> A < -u ( |_ ` -u B ) ) ) |