| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flltp1 | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  <  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 2 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  𝐴  <  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 3 |  | renegcl | ⊢ ( 𝐵  ∈  ℝ  →  - 𝐵  ∈  ℝ ) | 
						
							| 4 |  | flval | ⊢ ( - 𝐵  ∈  ℝ  →  ( ⌊ ‘ - 𝐵 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ( ⌊ ‘ - 𝐵 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 6 | 5 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ⌊ ‘ - 𝐵 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 7 |  | fllep1 | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 9 |  | reflcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 10 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 13 |  | letr | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ )  →  ( ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  →  𝐵  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 14 | 12 13 | mpd3an3 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) )  →  𝐵  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 15 | 8 14 | mpan2d | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  →  𝐵  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 16 |  | leneg | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℝ )  →  ( 𝐵  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵 ) ) | 
						
							| 17 | 11 16 | sylan2 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  ≤  ( ( ⌊ ‘ 𝐴 )  +  1 )  ↔  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵 ) ) | 
						
							| 18 | 15 17 | sylibd | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  →  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵 ) ) | 
						
							| 19 | 18 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  →  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵 ) ) | 
						
							| 20 |  | ltneg | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  <  𝐵  ↔  - 𝐵  <  - ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 21 | 9 20 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  <  𝐵  ↔  - 𝐵  <  - ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 22 | 9 | recnd | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 23 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 24 |  | negdi2 | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( ( ⌊ ‘ 𝐴 )  +  1 )  =  ( - ( ⌊ ‘ 𝐴 )  −  1 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 )  =  ( ( - ( ⌊ ‘ 𝐴 )  −  1 )  +  1 ) ) | 
						
							| 26 |  | negcl | ⊢ ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  →  - ( ⌊ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 27 |  | npcan | ⊢ ( ( - ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( - ( ⌊ ‘ 𝐴 )  −  1 )  +  1 )  =  - ( ⌊ ‘ 𝐴 ) ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( - ( ⌊ ‘ 𝐴 )  −  1 )  +  1 )  =  - ( ⌊ ‘ 𝐴 ) ) | 
						
							| 29 | 25 28 | eqtr2d | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( ⌊ ‘ 𝐴 )  =  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) | 
						
							| 30 | 22 23 29 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  - ( ⌊ ‘ 𝐴 )  =  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) | 
						
							| 31 | 30 | breq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( - 𝐵  <  - ( ⌊ ‘ 𝐴 )  ↔  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - 𝐵  <  - ( ⌊ ‘ 𝐴 )  ↔  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 33 | 21 32 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  <  𝐵  ↔  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 34 | 33 | biimpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  <  𝐵  →  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 35 | 19 34 | anim12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐵  ≤  𝐴  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  →  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) ) | 
						
							| 36 | 35 | ancomsd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( ⌊ ‘ 𝐴 )  <  𝐵  ∧  𝐵  ≤  𝐴 )  →  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) ) | 
						
							| 37 | 36 | impl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 38 |  | flcl | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 39 | 38 | peano2zd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℤ ) | 
						
							| 40 | 39 | znegcld | ⊢ ( 𝐴  ∈  ℝ  →  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℤ ) | 
						
							| 41 |  | rebtwnz | ⊢ ( - 𝐵  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) ) | 
						
							| 42 | 3 41 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) ) | 
						
							| 43 |  | breq1 | ⊢ ( 𝑥  =  - ( ( ⌊ ‘ 𝐴 )  +  1 )  →  ( 𝑥  ≤  - 𝐵  ↔  - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵 ) ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑥  =  - ( ( ⌊ ‘ 𝐴 )  +  1 )  →  ( 𝑥  +  1 )  =  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) | 
						
							| 45 | 44 | breq2d | ⊢ ( 𝑥  =  - ( ( ⌊ ‘ 𝐴 )  +  1 )  →  ( - 𝐵  <  ( 𝑥  +  1 )  ↔  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) | 
						
							| 46 | 43 45 | anbi12d | ⊢ ( 𝑥  =  - ( ( ⌊ ‘ 𝐴 )  +  1 )  →  ( ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) )  ↔  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) ) ) ) | 
						
							| 47 | 46 | riota2 | ⊢ ( ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℤ  ∧  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) )  →  ( ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 48 | 40 42 47 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  ≤  - 𝐵  ∧  - 𝐵  <  ( - ( ( ⌊ ‘ 𝐴 )  +  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 50 | 37 49 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  - 𝐵  ∧  - 𝐵  <  ( 𝑥  +  1 ) ) )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 51 | 6 50 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ⌊ ‘ - 𝐵 )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) | 
						
							| 52 | 38 | zcnd | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 53 |  | peano2cn | ⊢ ( ( ⌊ ‘ 𝐴 )  ∈  ℂ  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℂ ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℂ ) | 
						
							| 55 | 3 | flcld | ⊢ ( 𝐵  ∈  ℝ  →  ( ⌊ ‘ - 𝐵 )  ∈  ℤ ) | 
						
							| 56 | 55 | zcnd | ⊢ ( 𝐵  ∈  ℝ  →  ( ⌊ ‘ - 𝐵 )  ∈  ℂ ) | 
						
							| 57 |  | negcon2 | ⊢ ( ( ( ( ⌊ ‘ 𝐴 )  +  1 )  ∈  ℂ  ∧  ( ⌊ ‘ - 𝐵 )  ∈  ℂ )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 )  ↔  ( ⌊ ‘ - 𝐵 )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 58 | 54 56 57 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 )  ↔  ( ⌊ ‘ - 𝐵 )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 59 | 58 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ( ( ⌊ ‘ 𝐴 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 )  ↔  ( ⌊ ‘ - 𝐵 )  =  - ( ( ⌊ ‘ 𝐴 )  +  1 ) ) ) | 
						
							| 60 | 51 59 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ( ⌊ ‘ 𝐴 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 61 | 2 60 | breqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  ∧  𝐵  ≤  𝐴 )  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 62 | 61 | ex | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  →  ( 𝐵  ≤  𝐴  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 63 |  | ltnle | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ¬  𝐵  ≤  𝐴 ) ) | 
						
							| 64 |  | ceige | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ≤  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ≤  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 66 |  | ceicl | ⊢ ( 𝐵  ∈  ℝ  →  - ( ⌊ ‘ - 𝐵 )  ∈  ℤ ) | 
						
							| 67 | 66 | zred | ⊢ ( 𝐵  ∈  ℝ  →  - ( ⌊ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  - ( ⌊ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 69 |  | ltletr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  - ( ⌊ ‘ - 𝐵 )  ∈  ℝ )  →  ( ( 𝐴  <  𝐵  ∧  𝐵  ≤  - ( ⌊ ‘ - 𝐵 ) )  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 70 | 68 69 | mpd3an3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  <  𝐵  ∧  𝐵  ≤  - ( ⌊ ‘ - 𝐵 ) )  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 71 | 65 70 | mpan2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 72 | 63 71 | sylbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  𝐵  ≤  𝐴  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  →  ( ¬  𝐵  ≤  𝐴  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 74 | 62 73 | pm2.61d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( ⌊ ‘ 𝐴 )  <  𝐵 )  →  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 75 |  | flval | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 76 | 75 | ad3antrrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ⌊ ‘ 𝐴 )  =  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 77 |  | ceim1l | ⊢ ( 𝐵  ∈  ℝ  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵 ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵 ) | 
						
							| 79 |  | peano2rem | ⊢ ( - ( ⌊ ‘ - 𝐵 )  ∈  ℝ  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℝ ) | 
						
							| 80 | 67 79 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℝ ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℝ ) | 
						
							| 82 |  | ltleletr | ⊢ ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵  ∧  𝐵  ≤  𝐴 )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴 ) ) | 
						
							| 83 | 82 | 3com13 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℝ )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵  ∧  𝐵  ≤  𝐴 )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴 ) ) | 
						
							| 84 | 81 83 | mpd3an3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵  ∧  𝐵  ≤  𝐴 )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴 ) ) | 
						
							| 85 | 78 84 | mpand | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ≤  𝐴  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴 ) ) | 
						
							| 86 | 66 | zcnd | ⊢ ( 𝐵  ∈  ℝ  →  - ( ⌊ ‘ - 𝐵 )  ∈  ℂ ) | 
						
							| 87 |  | npcan | ⊢ ( ( - ( ⌊ ‘ - 𝐵 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 88 | 86 23 87 | sylancl | ⊢ ( 𝐵  ∈  ℝ  →  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 )  =  - ( ⌊ ‘ - 𝐵 ) ) | 
						
							| 89 | 88 | breq2d | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 )  ↔  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) | 
						
							| 90 | 89 | biimprd | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐴  <  - ( ⌊ ‘ - 𝐵 )  →  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  - ( ⌊ ‘ - 𝐵 )  →  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) | 
						
							| 92 | 85 91 | anim12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐵  ≤  𝐴  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  →  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) ) | 
						
							| 93 | 92 | ancomsd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  <  - ( ⌊ ‘ - 𝐵 )  ∧  𝐵  ≤  𝐴 )  →  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) ) | 
						
							| 94 | 93 | impl | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) | 
						
							| 95 |  | peano2zm | ⊢ ( - ( ⌊ ‘ - 𝐵 )  ∈  ℤ  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℤ ) | 
						
							| 96 | 66 95 | syl | ⊢ ( 𝐵  ∈  ℝ  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℤ ) | 
						
							| 97 |  | rebtwnz | ⊢ ( 𝐴  ∈  ℝ  →  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) ) | 
						
							| 98 |  | breq1 | ⊢ ( 𝑥  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  →  ( 𝑥  ≤  𝐴  ↔  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴 ) ) | 
						
							| 99 |  | oveq1 | ⊢ ( 𝑥  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  →  ( 𝑥  +  1 )  =  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) | 
						
							| 100 | 99 | breq2d | ⊢ ( 𝑥  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  →  ( 𝐴  <  ( 𝑥  +  1 )  ↔  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) | 
						
							| 101 | 98 100 | anbi12d | ⊢ ( 𝑥  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  →  ( ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) )  ↔  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) ) ) ) | 
						
							| 102 | 101 | riota2 | ⊢ ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ∈  ℤ  ∧  ∃! 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) )  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 ) ) ) | 
						
							| 103 | 96 97 102 | syl2anr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) )  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 ) ) ) | 
						
							| 104 | 103 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  ≤  𝐴  ∧  𝐴  <  ( ( - ( ⌊ ‘ - 𝐵 )  −  1 )  +  1 ) )  ↔  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) )  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 ) ) ) | 
						
							| 105 | 94 104 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ℩ 𝑥  ∈  ℤ ( 𝑥  ≤  𝐴  ∧  𝐴  <  ( 𝑥  +  1 ) ) )  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 ) ) | 
						
							| 106 | 76 105 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ⌊ ‘ 𝐴 )  =  ( - ( ⌊ ‘ - 𝐵 )  −  1 ) ) | 
						
							| 107 | 77 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( - ( ⌊ ‘ - 𝐵 )  −  1 )  <  𝐵 ) | 
						
							| 108 | 106 107 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  ∧  𝐵  ≤  𝐴 )  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) | 
						
							| 109 | 108 | ex | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  →  ( 𝐵  ≤  𝐴  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 110 |  | flle | ⊢ ( 𝐴  ∈  ℝ  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ⌊ ‘ 𝐴 )  ≤  𝐴 ) | 
						
							| 112 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ⌊ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 113 |  | lelttr | ⊢ ( ( ( ⌊ ‘ 𝐴 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  𝐴  <  𝐵 )  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 114 | 113 | 3coml | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( ⌊ ‘ 𝐴 )  ∈  ℝ )  →  ( ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  𝐴  <  𝐵 )  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 115 | 112 114 | mpd3an3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( ⌊ ‘ 𝐴 )  ≤  𝐴  ∧  𝐴  <  𝐵 )  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 116 | 111 115 | mpand | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 117 | 63 116 | sylbird | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  𝐵  ≤  𝐴  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  →  ( ¬  𝐵  ≤  𝐴  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) ) | 
						
							| 119 | 109 118 | pm2.61d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  - ( ⌊ ‘ - 𝐵 ) )  →  ( ⌊ ‘ 𝐴 )  <  𝐵 ) | 
						
							| 120 | 74 119 | impbida | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐴 )  <  𝐵  ↔  𝐴  <  - ( ⌊ ‘ - 𝐵 ) ) ) |