Step |
Hyp |
Ref |
Expression |
1 |
|
flltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
2 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
3 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
4 |
|
flval |
⊢ ( - 𝐵 ∈ ℝ → ( ⌊ ‘ - 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ - 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) ) |
6 |
5
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ⌊ ‘ - 𝐵 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) ) |
7 |
|
fllep1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
9 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
12 |
11
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
13 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
14 |
12 13
|
mpd3an3 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
15 |
8 14
|
mpan2d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 → 𝐵 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
16 |
|
leneg |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( 𝐵 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ) ) |
17 |
11 16
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ↔ - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ) ) |
18 |
15 17
|
sylibd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 → - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 → - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ) ) |
20 |
|
ltneg |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) < 𝐵 ↔ - 𝐵 < - ( ⌊ ‘ 𝐴 ) ) ) |
21 |
9 20
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) < 𝐵 ↔ - 𝐵 < - ( ⌊ ‘ 𝐴 ) ) ) |
22 |
9
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
24 |
|
negdi2 |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( ⌊ ‘ 𝐴 ) + 1 ) = ( - ( ⌊ ‘ 𝐴 ) − 1 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) = ( ( - ( ⌊ ‘ 𝐴 ) − 1 ) + 1 ) ) |
26 |
|
negcl |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℂ → - ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
npcan |
⊢ ( ( - ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( - ( ⌊ ‘ 𝐴 ) − 1 ) + 1 ) = - ( ⌊ ‘ 𝐴 ) ) |
28 |
26 27
|
sylan |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( - ( ⌊ ‘ 𝐴 ) − 1 ) + 1 ) = - ( ⌊ ‘ 𝐴 ) ) |
29 |
25 28
|
eqtr2d |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ⌊ ‘ 𝐴 ) = ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) |
30 |
22 23 29
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ 𝐴 ) = ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) |
31 |
30
|
breq2d |
⊢ ( 𝐴 ∈ ℝ → ( - 𝐵 < - ( ⌊ ‘ 𝐴 ) ↔ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐵 < - ( ⌊ ‘ 𝐴 ) ↔ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
33 |
21 32
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) < 𝐵 ↔ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
34 |
33
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) < 𝐵 → - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
35 |
19 34
|
anim12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) → ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) ) |
36 |
35
|
ancomsd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) ) |
37 |
36
|
impl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
38 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
39 |
38
|
peano2zd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
40 |
39
|
znegcld |
⊢ ( 𝐴 ∈ ℝ → - ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
41 |
|
rebtwnz |
⊢ ( - 𝐵 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) |
42 |
3 41
|
syl |
⊢ ( 𝐵 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) |
43 |
|
breq1 |
⊢ ( 𝑥 = - ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( 𝑥 ≤ - 𝐵 ↔ - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ) ) |
44 |
|
oveq1 |
⊢ ( 𝑥 = - ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( 𝑥 + 1 ) = ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) |
45 |
44
|
breq2d |
⊢ ( 𝑥 = - ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( - 𝐵 < ( 𝑥 + 1 ) ↔ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) |
46 |
43 45
|
anbi12d |
⊢ ( 𝑥 = - ( ( ⌊ ‘ 𝐴 ) + 1 ) → ( ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ↔ ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ) ) |
47 |
46
|
riota2 |
⊢ ( ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) → ( ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
48 |
40 42 47
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) ≤ - 𝐵 ∧ - 𝐵 < ( - ( ( ⌊ ‘ 𝐴 ) + 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
50 |
37 49
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ - 𝐵 ∧ - 𝐵 < ( 𝑥 + 1 ) ) ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
51 |
6 50
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ⌊ ‘ - 𝐵 ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
52 |
38
|
zcnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
53 |
|
peano2cn |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℂ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℂ ) |
54 |
52 53
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℂ ) |
55 |
3
|
flcld |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ - 𝐵 ) ∈ ℤ ) |
56 |
55
|
zcnd |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ - 𝐵 ) ∈ ℂ ) |
57 |
|
negcon2 |
⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℂ ∧ ( ⌊ ‘ - 𝐵 ) ∈ ℂ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ↔ ( ⌊ ‘ - 𝐵 ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
58 |
54 56 57
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ↔ ( ⌊ ‘ - 𝐵 ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ↔ ( ⌊ ‘ - 𝐵 ) = - ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
60 |
51 59
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ) |
61 |
2 60
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) |
62 |
61
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) → ( 𝐵 ≤ 𝐴 → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
63 |
|
ltnle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
64 |
|
ceige |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ - ( ⌊ ‘ - 𝐵 ) ) |
65 |
64
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ - ( ⌊ ‘ - 𝐵 ) ) |
66 |
|
ceicl |
⊢ ( 𝐵 ∈ ℝ → - ( ⌊ ‘ - 𝐵 ) ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( 𝐵 ∈ ℝ → - ( ⌊ ‘ - 𝐵 ) ∈ ℝ ) |
68 |
67
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → - ( ⌊ ‘ - 𝐵 ) ∈ ℝ ) |
69 |
|
ltletr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ - ( ⌊ ‘ - 𝐵 ) ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ - ( ⌊ ‘ - 𝐵 ) ) → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
70 |
68 69
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ - ( ⌊ ‘ - 𝐵 ) ) → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
71 |
65 70
|
mpan2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
72 |
63 71
|
sylbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 ≤ 𝐴 → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) → ( ¬ 𝐵 ≤ 𝐴 → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
74 |
62 73
|
pm2.61d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( ⌊ ‘ 𝐴 ) < 𝐵 ) → 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) |
75 |
|
flval |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
76 |
75
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) |
77 |
|
ceim1l |
⊢ ( 𝐵 ∈ ℝ → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ) |
78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ) |
79 |
|
peano2rem |
⊢ ( - ( ⌊ ‘ - 𝐵 ) ∈ ℝ → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℝ ) |
80 |
67 79
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℝ ) |
81 |
80
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℝ ) |
82 |
|
ltleletr |
⊢ ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ) ) |
83 |
82
|
3com13 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℝ ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ) ) |
84 |
81 83
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ∧ 𝐵 ≤ 𝐴 ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ) ) |
85 |
78 84
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ) ) |
86 |
66
|
zcnd |
⊢ ( 𝐵 ∈ ℝ → - ( ⌊ ‘ - 𝐵 ) ∈ ℂ ) |
87 |
|
npcan |
⊢ ( ( - ( ⌊ ‘ - 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ) |
88 |
86 23 87
|
sylancl |
⊢ ( 𝐵 ∈ ℝ → ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) = - ( ⌊ ‘ - 𝐵 ) ) |
89 |
88
|
breq2d |
⊢ ( 𝐵 ∈ ℝ → ( 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ↔ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |
90 |
89
|
biimprd |
⊢ ( 𝐵 ∈ ℝ → ( 𝐴 < - ( ⌊ ‘ - 𝐵 ) → 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) |
91 |
90
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < - ( ⌊ ‘ - 𝐵 ) → 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) |
92 |
85 91
|
anim12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) → ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) ) |
93 |
92
|
ancomsd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 < - ( ⌊ ‘ - 𝐵 ) ∧ 𝐵 ≤ 𝐴 ) → ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) ) |
94 |
93
|
impl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) |
95 |
|
peano2zm |
⊢ ( - ( ⌊ ‘ - 𝐵 ) ∈ ℤ → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℤ ) |
96 |
66 95
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℤ ) |
97 |
|
rebtwnz |
⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) |
98 |
|
breq1 |
⊢ ( 𝑥 = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) → ( 𝑥 ≤ 𝐴 ↔ ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ) ) |
99 |
|
oveq1 |
⊢ ( 𝑥 = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) → ( 𝑥 + 1 ) = ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) |
100 |
99
|
breq2d |
⊢ ( 𝑥 = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) → ( 𝐴 < ( 𝑥 + 1 ) ↔ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) |
101 |
98 100
|
anbi12d |
⊢ ( 𝑥 = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ) ) |
102 |
101
|
riota2 |
⊢ ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ) ) |
103 |
96 97 102
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ) ) |
104 |
103
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ≤ 𝐴 ∧ 𝐴 < ( ( - ( ⌊ ‘ - 𝐵 ) − 1 ) + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ) ) |
105 |
94 104
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ) |
106 |
76 105
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) = ( - ( ⌊ ‘ - 𝐵 ) − 1 ) ) |
107 |
77
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( - ( ⌊ ‘ - 𝐵 ) − 1 ) < 𝐵 ) |
108 |
106 107
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ∧ 𝐵 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) < 𝐵 ) |
109 |
108
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) → ( 𝐵 ≤ 𝐴 → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
110 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
111 |
110
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
112 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
113 |
|
lelttr |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
114 |
113
|
3coml |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
115 |
112 114
|
mpd3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
116 |
111 115
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
117 |
63 116
|
sylbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 ≤ 𝐴 → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
118 |
117
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ( ⌊ ‘ 𝐴 ) < 𝐵 ) ) |
119 |
109 118
|
pm2.61d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) → ( ⌊ ‘ 𝐴 ) < 𝐵 ) |
120 |
74 119
|
impbida |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐴 ) < 𝐵 ↔ 𝐴 < - ( ⌊ ‘ - 𝐵 ) ) ) |