| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltflcei | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐵 )  <  𝐴  ↔  𝐵  <  - ( ⌊ ‘ - 𝐴 ) ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐵 )  <  𝐴  ↔  𝐵  <  - ( ⌊ ‘ - 𝐴 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  ( ⌊ ‘ 𝐵 )  <  𝐴  ↔  ¬  𝐵  <  - ( ⌊ ‘ - 𝐴 ) ) ) | 
						
							| 4 |  | reflcl | ⊢ ( 𝐵  ∈  ℝ  →  ( ⌊ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 5 |  | lenlt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( ⌊ ‘ 𝐵 )  ∈  ℝ )  →  ( 𝐴  ≤  ( ⌊ ‘ 𝐵 )  ↔  ¬  ( ⌊ ‘ 𝐵 )  <  𝐴 ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  ( ⌊ ‘ 𝐵 )  ↔  ¬  ( ⌊ ‘ 𝐵 )  <  𝐴 ) ) | 
						
							| 7 |  | ceicl | ⊢ ( 𝐴  ∈  ℝ  →  - ( ⌊ ‘ - 𝐴 )  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( 𝐴  ∈  ℝ  →  - ( ⌊ ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 9 |  | lenlt | ⊢ ( ( - ( ⌊ ‘ - 𝐴 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - ( ⌊ ‘ - 𝐴 )  ≤  𝐵  ↔  ¬  𝐵  <  - ( ⌊ ‘ - 𝐴 ) ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - ( ⌊ ‘ - 𝐴 )  ≤  𝐵  ↔  ¬  𝐵  <  - ( ⌊ ‘ - 𝐴 ) ) ) | 
						
							| 11 | 3 6 10 | 3bitr4rd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - ( ⌊ ‘ - 𝐴 )  ≤  𝐵  ↔  𝐴  ≤  ( ⌊ ‘ 𝐵 ) ) ) |