Step |
Hyp |
Ref |
Expression |
1 |
|
ltflcei |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ⌊ ‘ 𝐵 ) < 𝐴 ↔ 𝐵 < - ( ⌊ ‘ - 𝐴 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ⌊ ‘ 𝐵 ) < 𝐴 ↔ 𝐵 < - ( ⌊ ‘ - 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( ⌊ ‘ 𝐵 ) < 𝐴 ↔ ¬ 𝐵 < - ( ⌊ ‘ - 𝐴 ) ) ) |
4 |
|
reflcl |
⊢ ( 𝐵 ∈ ℝ → ( ⌊ ‘ 𝐵 ) ∈ ℝ ) |
5 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐵 ) ∈ ℝ ) → ( 𝐴 ≤ ( ⌊ ‘ 𝐵 ) ↔ ¬ ( ⌊ ‘ 𝐵 ) < 𝐴 ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ ( ⌊ ‘ 𝐵 ) ↔ ¬ ( ⌊ ‘ 𝐵 ) < 𝐴 ) ) |
7 |
|
ceicl |
⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( 𝐴 ∈ ℝ → - ( ⌊ ‘ - 𝐴 ) ∈ ℝ ) |
9 |
|
lenlt |
⊢ ( ( - ( ⌊ ‘ - 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ↔ ¬ 𝐵 < - ( ⌊ ‘ - 𝐴 ) ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ↔ ¬ 𝐵 < - ( ⌊ ‘ - 𝐴 ) ) ) |
11 |
3 6 10
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 ↔ 𝐴 ≤ ( ⌊ ‘ 𝐵 ) ) ) |