| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 4 | 2 3 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 5 |  | iccssre | ⊢ ( ( 0  ∈  ℝ  ∧  ( 2  ·  π )  ∈  ℝ )  →  ( 0 [,] ( 2  ·  π ) )  ⊆  ℝ ) | 
						
							| 6 | 1 4 5 | mp2an | ⊢ ( 0 [,] ( 2  ·  π ) )  ⊆  ℝ | 
						
							| 7 | 6 | sseli | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  𝐴  ∈  ℝ ) | 
						
							| 8 | 7 | rehalfcld | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 9 | 8 | resincld | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℝ ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 |  | recoscl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 12 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 13 | 10 11 12 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 14 | 13 | rehalfcld | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 15 |  | cosbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 16 | 15 | simprd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ≤  1 ) | 
						
							| 17 |  | subge0 | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 18 | 10 11 17 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 19 |  | halfnneg2 | ⊢ ( ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 20 | 13 19 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 21 | 18 20 | bitr3d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( cos ‘ 𝐴 )  ≤  1  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 22 | 16 21 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 23 | 14 22 | resqrtcld | ⊢ ( 𝐴  ∈  ℝ  →  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 24 | 7 23 | syl | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 25 | 1 4 | elicc2i | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 26 |  | halfnneg2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  0  ≤  ( 𝐴  /  2 ) ) ) | 
						
							| 27 |  | 2pos | ⊢ 0  <  2 | 
						
							| 28 | 2 27 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 29 |  | ledivmul | ⊢ ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝐴  /  2 )  ≤  π  ↔  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 30 | 3 28 29 | mp3an23 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  /  2 )  ≤  π  ↔  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 31 | 30 | bicomd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  ( 2  ·  π )  ↔  ( 𝐴  /  2 )  ≤  π ) ) | 
						
							| 32 | 26 31 | anbi12d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) )  ↔  ( 0  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  π ) ) ) | 
						
							| 33 |  | rehalfcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 34 | 33 | rexrd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ* ) | 
						
							| 35 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 36 | 3 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 37 |  | elicc4 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  ( 𝐴  /  2 )  ∈  ℝ* )  →  ( ( 𝐴  /  2 )  ∈  ( 0 [,] π )  ↔  ( 0  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  π ) ) ) | 
						
							| 38 | 35 36 37 | mp3an12 | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ*  →  ( ( 𝐴  /  2 )  ∈  ( 0 [,] π )  ↔  ( 0  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  π ) ) ) | 
						
							| 39 | 34 38 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  /  2 )  ∈  ( 0 [,] π )  ↔  ( 0  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  π ) ) ) | 
						
							| 40 | 32 39 | bitr4d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) )  ↔  ( 𝐴  /  2 )  ∈  ( 0 [,] π ) ) ) | 
						
							| 41 | 40 | biimpd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) )  →  ( 𝐴  /  2 )  ∈  ( 0 [,] π ) ) ) | 
						
							| 42 | 41 | 3impib | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) )  →  ( 𝐴  /  2 )  ∈  ( 0 [,] π ) ) | 
						
							| 43 | 25 42 | sylbi | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( 𝐴  /  2 )  ∈  ( 0 [,] π ) ) | 
						
							| 44 |  | sinq12ge0 | ⊢ ( ( 𝐴  /  2 )  ∈  ( 0 [,] π )  →  0  ≤  ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  0  ≤  ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 46 | 14 22 | sqrtge0d | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 47 | 7 46 | syl | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  0  ≤  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 48 | 7 | recnd | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  𝐴  ∈  ℂ ) | 
						
							| 49 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 50 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 51 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 52 | 49 50 51 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | halfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 54 | 53 | sqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  =  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 55 |  | halfcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 56 |  | coscl | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( cos ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 57 | 56 | sqcld | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 58 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 59 |  | mulcom | ⊢ ( ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 60 | 57 58 59 | sylancl | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( 1  ·  2 )  −  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 ) )  =  ( ( 1  ·  2 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 62 | 58 | mullidi | ⊢ ( 1  ·  2 )  =  2 | 
						
							| 63 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 64 | 62 63 | eqtri | ⊢ ( 1  ·  2 )  =  ( 1  +  1 ) | 
						
							| 65 | 64 | oveq1i | ⊢ ( ( 1  ·  2 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) )  =  ( ( 1  +  1 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 66 | 61 65 | eqtrdi | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( 1  ·  2 )  −  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 ) )  =  ( ( 1  +  1 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 67 |  | subdir | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ·  2 )  =  ( ( 1  ·  2 )  −  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 ) ) ) | 
						
							| 68 | 49 58 67 | mp3an13 | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ·  2 )  =  ( ( 1  ·  2 )  −  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 ) ) ) | 
						
							| 69 | 57 68 | syl | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ·  2 )  =  ( ( 1  ·  2 )  −  ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 ) ) ) | 
						
							| 70 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 71 | 58 57 70 | sylancr | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 72 |  | subsub3 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  −  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  =  ( ( 1  +  1 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 73 | 49 49 72 | mp3an13 | ⊢ ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ  →  ( 1  −  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  =  ( ( 1  +  1 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 74 | 71 73 | syl | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( 1  −  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  =  ( ( 1  +  1 )  −  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) ) | 
						
							| 75 | 66 69 74 | 3eqtr4d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ·  2 )  =  ( 1  −  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) ) | 
						
							| 76 |  | sincl | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 77 | 76 | sqcld | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 78 | 77 57 | pncand | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  +  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 79 |  | sincossq | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  +  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  1 ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  +  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  =  ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 81 | 78 80 | eqtr3d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( ( 1  −  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ·  2 ) ) | 
						
							| 83 |  | cos2t | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( 1  −  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) ) )  =  ( 1  −  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) ) | 
						
							| 85 | 75 82 84 | 3eqtr4d | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( 1  −  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 86 | 55 85 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( 1  −  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) ) ) ) | 
						
							| 87 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 88 |  | divcan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 89 | 58 87 88 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 91 | 90 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) ) )  =  ( 1  −  ( cos ‘ 𝐴 ) ) ) | 
						
							| 92 | 86 91 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  =  ( 1  −  ( cos ‘ 𝐴 ) ) ) | 
						
							| 93 | 92 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  /  2 )  =  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 94 | 55 | sincld | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 95 | 94 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 96 |  | divcan4 | ⊢ ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  /  2 )  =  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 97 | 58 87 96 | mp3an23 | ⊢ ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  /  2 )  =  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 98 | 95 97 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ·  2 )  /  2 )  =  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 99 | 54 93 98 | 3eqtr2rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) ) | 
						
							| 100 | 48 99 | syl | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( ( sin ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) ) | 
						
							| 101 | 9 24 45 47 100 | sq11d | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( sin ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) |