Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
2re |
⊢ 2 ∈ ℝ |
3 |
|
pire |
⊢ π ∈ ℝ |
4 |
2 3
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
5 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ ) → ( 0 [,] ( 2 · π ) ) ⊆ ℝ ) |
6 |
1 4 5
|
mp2an |
⊢ ( 0 [,] ( 2 · π ) ) ⊆ ℝ |
7 |
6
|
sseli |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → 𝐴 ∈ ℝ ) |
8 |
7
|
rehalfcld |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( 𝐴 / 2 ) ∈ ℝ ) |
9 |
8
|
resincld |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
12 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( 1 − ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( 1 − ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
14 |
13
|
rehalfcld |
⊢ ( 𝐴 ∈ ℝ → ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
15 |
|
cosbnd |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
16 |
15
|
simprd |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ≤ 1 ) |
17 |
|
subge0 |
⊢ ( ( 1 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( cos ‘ 𝐴 ) ) ↔ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
18 |
10 11 17
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ ( 1 − ( cos ‘ 𝐴 ) ) ↔ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
19 |
|
halfnneg2 |
⊢ ( ( 1 − ( cos ‘ 𝐴 ) ) ∈ ℝ → ( 0 ≤ ( 1 − ( cos ‘ 𝐴 ) ) ↔ 0 ≤ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
20 |
13 19
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ ( 1 − ( cos ‘ 𝐴 ) ) ↔ 0 ≤ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
21 |
18 20
|
bitr3d |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ≤ 1 ↔ 0 ≤ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
22 |
16 21
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) |
23 |
14 22
|
resqrtcld |
⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
24 |
7 23
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
25 |
1 4
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ ( 2 · π ) ) ) |
26 |
|
halfnneg2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 / 2 ) ) ) |
27 |
|
2pos |
⊢ 0 < 2 |
28 |
2 27
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
29 |
|
ledivmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 / 2 ) ≤ π ↔ 𝐴 ≤ ( 2 · π ) ) ) |
30 |
3 28 29
|
mp3an23 |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) ≤ π ↔ 𝐴 ≤ ( 2 · π ) ) ) |
31 |
30
|
bicomd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( 2 · π ) ↔ ( 𝐴 / 2 ) ≤ π ) ) |
32 |
26 31
|
anbi12d |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ ( 2 · π ) ) ↔ ( 0 ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ π ) ) ) |
33 |
|
rehalfcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) |
34 |
33
|
rexrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ* ) |
35 |
|
0xr |
⊢ 0 ∈ ℝ* |
36 |
3
|
rexri |
⊢ π ∈ ℝ* |
37 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝐴 / 2 ) ∈ ℝ* ) → ( ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ↔ ( 0 ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ π ) ) ) |
38 |
35 36 37
|
mp3an12 |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ* → ( ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ↔ ( 0 ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ π ) ) ) |
39 |
34 38
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ↔ ( 0 ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ π ) ) ) |
40 |
32 39
|
bitr4d |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ ( 2 · π ) ) ↔ ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ) ) |
41 |
40
|
biimpd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ ( 2 · π ) ) → ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ) ) |
42 |
41
|
3impib |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ ( 2 · π ) ) → ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ) |
43 |
25 42
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( 𝐴 / 2 ) ∈ ( 0 [,] π ) ) |
44 |
|
sinq12ge0 |
⊢ ( ( 𝐴 / 2 ) ∈ ( 0 [,] π ) → 0 ≤ ( sin ‘ ( 𝐴 / 2 ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → 0 ≤ ( sin ‘ ( 𝐴 / 2 ) ) ) |
46 |
14 22
|
sqrtge0d |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
47 |
7 46
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → 0 ≤ ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
48 |
7
|
recnd |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → 𝐴 ∈ ℂ ) |
49 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
50 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
51 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ) → ( 1 − ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
52 |
49 50 51
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
53 |
52
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
54 |
53
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) = ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) |
55 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
56 |
|
coscl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
57 |
56
|
sqcld |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) |
58 |
|
2cn |
⊢ 2 ∈ ℂ |
59 |
|
mulcom |
⊢ ( ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
60 |
57 58 59
|
sylancl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
61 |
60
|
oveq2d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 1 · 2 ) − ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) ) = ( ( 1 · 2 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
62 |
58
|
mulid2i |
⊢ ( 1 · 2 ) = 2 |
63 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
64 |
62 63
|
eqtri |
⊢ ( 1 · 2 ) = ( 1 + 1 ) |
65 |
64
|
oveq1i |
⊢ ( ( 1 · 2 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) = ( ( 1 + 1 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
66 |
61 65
|
eqtrdi |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 1 · 2 ) − ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) ) = ( ( 1 + 1 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
67 |
|
subdir |
⊢ ( ( 1 ∈ ℂ ∧ ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) · 2 ) = ( ( 1 · 2 ) − ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) ) ) |
68 |
49 58 67
|
mp3an13 |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) · 2 ) = ( ( 1 · 2 ) − ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) ) ) |
69 |
57 68
|
syl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) · 2 ) = ( ( 1 · 2 ) − ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) ) ) |
70 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) |
71 |
58 57 70
|
sylancr |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) |
72 |
|
subsub3 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( 1 − ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) = ( ( 1 + 1 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
73 |
49 49 72
|
mp3an13 |
⊢ ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ → ( 1 − ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) = ( ( 1 + 1 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
74 |
71 73
|
syl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( 1 − ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) = ( ( 1 + 1 ) − ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) ) |
75 |
66 69 74
|
3eqtr4d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) · 2 ) = ( 1 − ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) ) |
76 |
|
sincl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
77 |
76
|
sqcld |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) |
78 |
77 57
|
pncand |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
79 |
|
sincossq |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = 1 ) |
80 |
79
|
oveq1d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) + ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) = ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
81 |
78 80
|
eqtr3d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( ( 1 − ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) · 2 ) ) |
83 |
|
cos2t |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
84 |
83
|
oveq2d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( 1 − ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) = ( 1 − ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) ) |
85 |
75 82 84
|
3eqtr4d |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( 1 − ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) ) |
86 |
55 85
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( 1 − ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) ) |
87 |
|
2ne0 |
⊢ 2 ≠ 0 |
88 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
89 |
58 87 88
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
90 |
89
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( cos ‘ 𝐴 ) ) |
91 |
90
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) ) = ( 1 − ( cos ‘ 𝐴 ) ) ) |
92 |
86 91
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) = ( 1 − ( cos ‘ 𝐴 ) ) ) |
93 |
92
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) / 2 ) = ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) |
94 |
55
|
sincld |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
95 |
94
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) |
96 |
|
divcan4 |
⊢ ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) / 2 ) = ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
97 |
58 87 96
|
mp3an23 |
⊢ ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) / 2 ) = ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
98 |
95 97
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) · 2 ) / 2 ) = ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
99 |
54 93 98
|
3eqtr2rd |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) |
100 |
48 99
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( ( sin ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) |
101 |
9 24 45 47 100
|
sq11d |
⊢ ( 𝐴 ∈ ( 0 [,] ( 2 · π ) ) → ( sin ‘ ( 𝐴 / 2 ) ) = ( √ ‘ ( ( 1 − ( cos ‘ 𝐴 ) ) / 2 ) ) ) |