Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
2re |
|- 2 e. RR |
3 |
|
pire |
|- _pi e. RR |
4 |
2 3
|
remulcli |
|- ( 2 x. _pi ) e. RR |
5 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 2 x. _pi ) e. RR ) -> ( 0 [,] ( 2 x. _pi ) ) C_ RR ) |
6 |
1 4 5
|
mp2an |
|- ( 0 [,] ( 2 x. _pi ) ) C_ RR |
7 |
6
|
sseli |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> A e. RR ) |
8 |
7
|
rehalfcld |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( A / 2 ) e. RR ) |
9 |
8
|
resincld |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) e. RR ) |
10 |
|
1re |
|- 1 e. RR |
11 |
|
recoscl |
|- ( A e. RR -> ( cos ` A ) e. RR ) |
12 |
|
resubcl |
|- ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 - ( cos ` A ) ) e. RR ) |
13 |
10 11 12
|
sylancr |
|- ( A e. RR -> ( 1 - ( cos ` A ) ) e. RR ) |
14 |
13
|
rehalfcld |
|- ( A e. RR -> ( ( 1 - ( cos ` A ) ) / 2 ) e. RR ) |
15 |
|
cosbnd |
|- ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) |
16 |
15
|
simprd |
|- ( A e. RR -> ( cos ` A ) <_ 1 ) |
17 |
|
subge0 |
|- ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> ( cos ` A ) <_ 1 ) ) |
18 |
10 11 17
|
sylancr |
|- ( A e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> ( cos ` A ) <_ 1 ) ) |
19 |
|
halfnneg2 |
|- ( ( 1 - ( cos ` A ) ) e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
20 |
13 19
|
syl |
|- ( A e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
21 |
18 20
|
bitr3d |
|- ( A e. RR -> ( ( cos ` A ) <_ 1 <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
22 |
16 21
|
mpbid |
|- ( A e. RR -> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) |
23 |
14 22
|
resqrtcld |
|- ( A e. RR -> ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) e. RR ) |
24 |
7 23
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) e. RR ) |
25 |
1 4
|
elicc2i |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 <_ A /\ A <_ ( 2 x. _pi ) ) ) |
26 |
|
halfnneg2 |
|- ( A e. RR -> ( 0 <_ A <-> 0 <_ ( A / 2 ) ) ) |
27 |
|
2pos |
|- 0 < 2 |
28 |
2 27
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
29 |
|
ledivmul |
|- ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( A / 2 ) <_ _pi <-> A <_ ( 2 x. _pi ) ) ) |
30 |
3 28 29
|
mp3an23 |
|- ( A e. RR -> ( ( A / 2 ) <_ _pi <-> A <_ ( 2 x. _pi ) ) ) |
31 |
30
|
bicomd |
|- ( A e. RR -> ( A <_ ( 2 x. _pi ) <-> ( A / 2 ) <_ _pi ) ) |
32 |
26 31
|
anbi12d |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
33 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
34 |
33
|
rexrd |
|- ( A e. RR -> ( A / 2 ) e. RR* ) |
35 |
|
0xr |
|- 0 e. RR* |
36 |
3
|
rexri |
|- _pi e. RR* |
37 |
|
elicc4 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( A / 2 ) e. RR* ) -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
38 |
35 36 37
|
mp3an12 |
|- ( ( A / 2 ) e. RR* -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
39 |
34 38
|
syl |
|- ( A e. RR -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
40 |
32 39
|
bitr4d |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) <-> ( A / 2 ) e. ( 0 [,] _pi ) ) ) |
41 |
40
|
biimpd |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) ) |
42 |
41
|
3impib |
|- ( ( A e. RR /\ 0 <_ A /\ A <_ ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) |
43 |
25 42
|
sylbi |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) |
44 |
|
sinq12ge0 |
|- ( ( A / 2 ) e. ( 0 [,] _pi ) -> 0 <_ ( sin ` ( A / 2 ) ) ) |
45 |
43 44
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> 0 <_ ( sin ` ( A / 2 ) ) ) |
46 |
14 22
|
sqrtge0d |
|- ( A e. RR -> 0 <_ ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
47 |
7 46
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> 0 <_ ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
48 |
7
|
recnd |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> A e. CC ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
51 |
|
subcl |
|- ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 - ( cos ` A ) ) e. CC ) |
52 |
49 50 51
|
sylancr |
|- ( A e. CC -> ( 1 - ( cos ` A ) ) e. CC ) |
53 |
52
|
halfcld |
|- ( A e. CC -> ( ( 1 - ( cos ` A ) ) / 2 ) e. CC ) |
54 |
53
|
sqsqrtd |
|- ( A e. CC -> ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) = ( ( 1 - ( cos ` A ) ) / 2 ) ) |
55 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
56 |
|
coscl |
|- ( ( A / 2 ) e. CC -> ( cos ` ( A / 2 ) ) e. CC ) |
57 |
56
|
sqcld |
|- ( ( A / 2 ) e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) |
58 |
|
2cn |
|- 2 e. CC |
59 |
|
mulcom |
|- ( ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC ) -> ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
60 |
57 58 59
|
sylancl |
|- ( ( A / 2 ) e. CC -> ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
61 |
60
|
oveq2d |
|- ( ( A / 2 ) e. CC -> ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) = ( ( 1 x. 2 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
62 |
58
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
63 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
64 |
62 63
|
eqtri |
|- ( 1 x. 2 ) = ( 1 + 1 ) |
65 |
64
|
oveq1i |
|- ( ( 1 x. 2 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
66 |
61 65
|
eqtrdi |
|- ( ( A / 2 ) e. CC -> ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
67 |
|
subdir |
|- ( ( 1 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC ) -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
68 |
49 58 67
|
mp3an13 |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
69 |
57 68
|
syl |
|- ( ( A / 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
70 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
71 |
58 57 70
|
sylancr |
|- ( ( A / 2 ) e. CC -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
72 |
|
subsub3 |
|- ( ( 1 e. CC /\ ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
73 |
49 49 72
|
mp3an13 |
|- ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
74 |
71 73
|
syl |
|- ( ( A / 2 ) e. CC -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
75 |
66 69 74
|
3eqtr4d |
|- ( ( A / 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) |
76 |
|
sincl |
|- ( ( A / 2 ) e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
77 |
76
|
sqcld |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
78 |
77 57
|
pncand |
|- ( ( A / 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
79 |
|
sincossq |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = 1 ) |
80 |
79
|
oveq1d |
|- ( ( A / 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
81 |
78 80
|
eqtr3d |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
82 |
81
|
oveq1d |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) ) |
83 |
|
cos2t |
|- ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) |
84 |
83
|
oveq2d |
|- ( ( A / 2 ) e. CC -> ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) = ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) |
85 |
75 82 84
|
3eqtr4d |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) ) |
86 |
55 85
|
syl |
|- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) ) |
87 |
|
2ne0 |
|- 2 =/= 0 |
88 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
89 |
58 87 88
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
90 |
89
|
fveq2d |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) |
91 |
90
|
oveq2d |
|- ( A e. CC -> ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) = ( 1 - ( cos ` A ) ) ) |
92 |
86 91
|
eqtrd |
|- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` A ) ) ) |
93 |
92
|
oveq1d |
|- ( A e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( 1 - ( cos ` A ) ) / 2 ) ) |
94 |
55
|
sincld |
|- ( A e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
95 |
94
|
sqcld |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
96 |
|
divcan4 |
|- ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
97 |
58 87 96
|
mp3an23 |
|- ( ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
98 |
95 97
|
syl |
|- ( A e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
99 |
54 93 98
|
3eqtr2rd |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
100 |
48 99
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
101 |
9 24 45 47 100
|
sq11d |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |