| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
|- 0 e. RR |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
|
pire |
|- _pi e. RR |
| 4 |
2 3
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 5 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 2 x. _pi ) e. RR ) -> ( 0 [,] ( 2 x. _pi ) ) C_ RR ) |
| 6 |
1 4 5
|
mp2an |
|- ( 0 [,] ( 2 x. _pi ) ) C_ RR |
| 7 |
6
|
sseli |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> A e. RR ) |
| 8 |
7
|
rehalfcld |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( A / 2 ) e. RR ) |
| 9 |
8
|
resincld |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) e. RR ) |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
|
recoscl |
|- ( A e. RR -> ( cos ` A ) e. RR ) |
| 12 |
|
resubcl |
|- ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 - ( cos ` A ) ) e. RR ) |
| 13 |
10 11 12
|
sylancr |
|- ( A e. RR -> ( 1 - ( cos ` A ) ) e. RR ) |
| 14 |
13
|
rehalfcld |
|- ( A e. RR -> ( ( 1 - ( cos ` A ) ) / 2 ) e. RR ) |
| 15 |
|
cosbnd |
|- ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) |
| 16 |
15
|
simprd |
|- ( A e. RR -> ( cos ` A ) <_ 1 ) |
| 17 |
|
subge0 |
|- ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> ( cos ` A ) <_ 1 ) ) |
| 18 |
10 11 17
|
sylancr |
|- ( A e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> ( cos ` A ) <_ 1 ) ) |
| 19 |
|
halfnneg2 |
|- ( ( 1 - ( cos ` A ) ) e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
| 20 |
13 19
|
syl |
|- ( A e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
| 21 |
18 20
|
bitr3d |
|- ( A e. RR -> ( ( cos ` A ) <_ 1 <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
| 22 |
16 21
|
mpbid |
|- ( A e. RR -> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) |
| 23 |
14 22
|
resqrtcld |
|- ( A e. RR -> ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) e. RR ) |
| 24 |
7 23
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) e. RR ) |
| 25 |
1 4
|
elicc2i |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) <-> ( A e. RR /\ 0 <_ A /\ A <_ ( 2 x. _pi ) ) ) |
| 26 |
|
halfnneg2 |
|- ( A e. RR -> ( 0 <_ A <-> 0 <_ ( A / 2 ) ) ) |
| 27 |
|
2pos |
|- 0 < 2 |
| 28 |
2 27
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 29 |
|
ledivmul |
|- ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( A / 2 ) <_ _pi <-> A <_ ( 2 x. _pi ) ) ) |
| 30 |
3 28 29
|
mp3an23 |
|- ( A e. RR -> ( ( A / 2 ) <_ _pi <-> A <_ ( 2 x. _pi ) ) ) |
| 31 |
30
|
bicomd |
|- ( A e. RR -> ( A <_ ( 2 x. _pi ) <-> ( A / 2 ) <_ _pi ) ) |
| 32 |
26 31
|
anbi12d |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
| 33 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
| 34 |
33
|
rexrd |
|- ( A e. RR -> ( A / 2 ) e. RR* ) |
| 35 |
|
0xr |
|- 0 e. RR* |
| 36 |
3
|
rexri |
|- _pi e. RR* |
| 37 |
|
elicc4 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( A / 2 ) e. RR* ) -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
| 38 |
35 36 37
|
mp3an12 |
|- ( ( A / 2 ) e. RR* -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
| 39 |
34 38
|
syl |
|- ( A e. RR -> ( ( A / 2 ) e. ( 0 [,] _pi ) <-> ( 0 <_ ( A / 2 ) /\ ( A / 2 ) <_ _pi ) ) ) |
| 40 |
32 39
|
bitr4d |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) <-> ( A / 2 ) e. ( 0 [,] _pi ) ) ) |
| 41 |
40
|
biimpd |
|- ( A e. RR -> ( ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) ) |
| 42 |
41
|
3impib |
|- ( ( A e. RR /\ 0 <_ A /\ A <_ ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) |
| 43 |
25 42
|
sylbi |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( A / 2 ) e. ( 0 [,] _pi ) ) |
| 44 |
|
sinq12ge0 |
|- ( ( A / 2 ) e. ( 0 [,] _pi ) -> 0 <_ ( sin ` ( A / 2 ) ) ) |
| 45 |
43 44
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> 0 <_ ( sin ` ( A / 2 ) ) ) |
| 46 |
14 22
|
sqrtge0d |
|- ( A e. RR -> 0 <_ ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
| 47 |
7 46
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> 0 <_ ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |
| 48 |
7
|
recnd |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> A e. CC ) |
| 49 |
|
ax-1cn |
|- 1 e. CC |
| 50 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 51 |
|
subcl |
|- ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 - ( cos ` A ) ) e. CC ) |
| 52 |
49 50 51
|
sylancr |
|- ( A e. CC -> ( 1 - ( cos ` A ) ) e. CC ) |
| 53 |
52
|
halfcld |
|- ( A e. CC -> ( ( 1 - ( cos ` A ) ) / 2 ) e. CC ) |
| 54 |
53
|
sqsqrtd |
|- ( A e. CC -> ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) = ( ( 1 - ( cos ` A ) ) / 2 ) ) |
| 55 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
| 56 |
|
coscl |
|- ( ( A / 2 ) e. CC -> ( cos ` ( A / 2 ) ) e. CC ) |
| 57 |
56
|
sqcld |
|- ( ( A / 2 ) e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 58 |
|
2cn |
|- 2 e. CC |
| 59 |
|
mulcom |
|- ( ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC ) -> ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 60 |
57 58 59
|
sylancl |
|- ( ( A / 2 ) e. CC -> ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 61 |
60
|
oveq2d |
|- ( ( A / 2 ) e. CC -> ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) = ( ( 1 x. 2 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 62 |
58
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 63 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 64 |
62 63
|
eqtri |
|- ( 1 x. 2 ) = ( 1 + 1 ) |
| 65 |
64
|
oveq1i |
|- ( ( 1 x. 2 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 66 |
61 65
|
eqtrdi |
|- ( ( A / 2 ) e. CC -> ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 67 |
|
subdir |
|- ( ( 1 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC ) -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
| 68 |
49 58 67
|
mp3an13 |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
| 69 |
57 68
|
syl |
|- ( ( A / 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( ( 1 x. 2 ) - ( ( ( cos ` ( A / 2 ) ) ^ 2 ) x. 2 ) ) ) |
| 70 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 71 |
58 57 70
|
sylancr |
|- ( ( A / 2 ) e. CC -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 72 |
|
subsub3 |
|- ( ( 1 e. CC /\ ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC /\ 1 e. CC ) -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 73 |
49 49 72
|
mp3an13 |
|- ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 74 |
71 73
|
syl |
|- ( ( A / 2 ) e. CC -> ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( ( 1 + 1 ) - ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) ) |
| 75 |
66 69 74
|
3eqtr4d |
|- ( ( A / 2 ) e. CC -> ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) = ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) |
| 76 |
|
sincl |
|- ( ( A / 2 ) e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
| 77 |
76
|
sqcld |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 78 |
77 57
|
pncand |
|- ( ( A / 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
| 79 |
|
sincossq |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = 1 ) |
| 80 |
79
|
oveq1d |
|- ( ( A / 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) + ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) = ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 81 |
78 80
|
eqtr3d |
|- ( ( A / 2 ) e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 82 |
81
|
oveq1d |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( ( 1 - ( ( cos ` ( A / 2 ) ) ^ 2 ) ) x. 2 ) ) |
| 83 |
|
cos2t |
|- ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) |
| 84 |
83
|
oveq2d |
|- ( ( A / 2 ) e. CC -> ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) = ( 1 - ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) |
| 85 |
75 82 84
|
3eqtr4d |
|- ( ( A / 2 ) e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) ) |
| 86 |
55 85
|
syl |
|- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) ) |
| 87 |
|
2ne0 |
|- 2 =/= 0 |
| 88 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 89 |
58 87 88
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 90 |
89
|
fveq2d |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) |
| 91 |
90
|
oveq2d |
|- ( A e. CC -> ( 1 - ( cos ` ( 2 x. ( A / 2 ) ) ) ) = ( 1 - ( cos ` A ) ) ) |
| 92 |
86 91
|
eqtrd |
|- ( A e. CC -> ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) = ( 1 - ( cos ` A ) ) ) |
| 93 |
92
|
oveq1d |
|- ( A e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( 1 - ( cos ` A ) ) / 2 ) ) |
| 94 |
55
|
sincld |
|- ( A e. CC -> ( sin ` ( A / 2 ) ) e. CC ) |
| 95 |
94
|
sqcld |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 96 |
|
divcan4 |
|- ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
| 97 |
58 87 96
|
mp3an23 |
|- ( ( ( sin ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
| 98 |
95 97
|
syl |
|- ( A e. CC -> ( ( ( ( sin ` ( A / 2 ) ) ^ 2 ) x. 2 ) / 2 ) = ( ( sin ` ( A / 2 ) ) ^ 2 ) ) |
| 99 |
54 93 98
|
3eqtr2rd |
|- ( A e. CC -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
| 100 |
48 99
|
syl |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( ( sin ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
| 101 |
9 24 45 47 100
|
sq11d |
|- ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) |