| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
|- _pi e. RR |
| 2 |
1
|
renegcli |
|- -u _pi e. RR |
| 3 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 4 |
2 1 3
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 5 |
4
|
sseli |
|- ( A e. ( -u _pi [,] _pi ) -> A e. RR ) |
| 6 |
5
|
rehalfcld |
|- ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. RR ) |
| 7 |
6
|
recoscld |
|- ( A e. ( -u _pi [,] _pi ) -> ( cos ` ( A / 2 ) ) e. RR ) |
| 8 |
|
1re |
|- 1 e. RR |
| 9 |
5
|
recoscld |
|- ( A e. ( -u _pi [,] _pi ) -> ( cos ` A ) e. RR ) |
| 10 |
|
readdcl |
|- ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 + ( cos ` A ) ) e. RR ) |
| 11 |
8 9 10
|
sylancr |
|- ( A e. ( -u _pi [,] _pi ) -> ( 1 + ( cos ` A ) ) e. RR ) |
| 12 |
11
|
rehalfcld |
|- ( A e. ( -u _pi [,] _pi ) -> ( ( 1 + ( cos ` A ) ) / 2 ) e. RR ) |
| 13 |
|
cosbnd |
|- ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) |
| 14 |
13
|
simpld |
|- ( A e. RR -> -u 1 <_ ( cos ` A ) ) |
| 15 |
|
recoscl |
|- ( A e. RR -> ( cos ` A ) e. RR ) |
| 16 |
|
recn |
|- ( ( cos ` A ) e. RR -> ( cos ` A ) e. CC ) |
| 17 |
|
recn |
|- ( 1 e. RR -> 1 e. CC ) |
| 18 |
|
subneg |
|- ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( ( cos ` A ) + 1 ) ) |
| 19 |
|
addcom |
|- ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 + ( cos ` A ) ) = ( ( cos ` A ) + 1 ) ) |
| 20 |
19
|
ancoms |
|- ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( 1 + ( cos ` A ) ) = ( ( cos ` A ) + 1 ) ) |
| 21 |
18 20
|
eqtr4d |
|- ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) |
| 22 |
16 17 21
|
syl2an |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) |
| 23 |
22
|
breq2d |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> 0 <_ ( 1 + ( cos ` A ) ) ) ) |
| 24 |
|
renegcl |
|- ( 1 e. RR -> -u 1 e. RR ) |
| 25 |
|
subge0 |
|- ( ( ( cos ` A ) e. RR /\ -u 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) |
| 26 |
24 25
|
sylan2 |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) |
| 27 |
10
|
ancoms |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 1 + ( cos ` A ) ) e. RR ) |
| 28 |
|
halfnneg2 |
|- ( ( 1 + ( cos ` A ) ) e. RR -> ( 0 <_ ( 1 + ( cos ` A ) ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |
| 29 |
27 28
|
syl |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( 1 + ( cos ` A ) ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |
| 30 |
23 26 29
|
3bitr3d |
|- ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( -u 1 <_ ( cos ` A ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |
| 31 |
15 8 30
|
sylancl |
|- ( A e. RR -> ( -u 1 <_ ( cos ` A ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |
| 32 |
14 31
|
mpbid |
|- ( A e. RR -> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) |
| 33 |
5 32
|
syl |
|- ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) |
| 34 |
12 33
|
resqrtcld |
|- ( A e. ( -u _pi [,] _pi ) -> ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) e. RR ) |
| 35 |
2 1
|
elicc2i |
|- ( A e. ( -u _pi [,] _pi ) <-> ( A e. RR /\ -u _pi <_ A /\ A <_ _pi ) ) |
| 36 |
|
2re |
|- 2 e. RR |
| 37 |
|
2pos |
|- 0 < 2 |
| 38 |
36 37
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 39 |
|
lediv1 |
|- ( ( -u _pi e. RR /\ A e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( -u _pi <_ A <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) ) |
| 40 |
2 38 39
|
mp3an13 |
|- ( A e. RR -> ( -u _pi <_ A <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) ) |
| 41 |
|
picn |
|- _pi e. CC |
| 42 |
|
2cn |
|- 2 e. CC |
| 43 |
|
2ne0 |
|- 2 =/= 0 |
| 44 |
|
divneg |
|- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
| 45 |
41 42 43 44
|
mp3an |
|- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
| 46 |
45
|
breq1i |
|- ( -u ( _pi / 2 ) <_ ( A / 2 ) <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) |
| 47 |
40 46
|
bitr4di |
|- ( A e. RR -> ( -u _pi <_ A <-> -u ( _pi / 2 ) <_ ( A / 2 ) ) ) |
| 48 |
|
lediv1 |
|- ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ _pi <-> ( A / 2 ) <_ ( _pi / 2 ) ) ) |
| 49 |
1 38 48
|
mp3an23 |
|- ( A e. RR -> ( A <_ _pi <-> ( A / 2 ) <_ ( _pi / 2 ) ) ) |
| 50 |
47 49
|
anbi12d |
|- ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) |
| 51 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
| 52 |
51
|
rexrd |
|- ( A e. RR -> ( A / 2 ) e. RR* ) |
| 53 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 54 |
53
|
renegcli |
|- -u ( _pi / 2 ) e. RR |
| 55 |
54
|
rexri |
|- -u ( _pi / 2 ) e. RR* |
| 56 |
53
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 57 |
|
elicc4 |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( A / 2 ) e. RR* ) -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) |
| 58 |
55 56 57
|
mp3an12 |
|- ( ( A / 2 ) e. RR* -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) |
| 59 |
52 58
|
syl |
|- ( A e. RR -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) |
| 60 |
50 59
|
bitr4d |
|- ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) <-> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ) |
| 61 |
60
|
biimpd |
|- ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ) |
| 62 |
61
|
3impib |
|- ( ( A e. RR /\ -u _pi <_ A /\ A <_ _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 63 |
35 62
|
sylbi |
|- ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 64 |
|
cosq14ge0 |
|- ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` ( A / 2 ) ) ) |
| 65 |
63 64
|
syl |
|- ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( cos ` ( A / 2 ) ) ) |
| 66 |
12 33
|
sqrtge0d |
|- ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |
| 67 |
5
|
recnd |
|- ( A e. ( -u _pi [,] _pi ) -> A e. CC ) |
| 68 |
|
ax-1cn |
|- 1 e. CC |
| 69 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 70 |
|
addcl |
|- ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 + ( cos ` A ) ) e. CC ) |
| 71 |
68 69 70
|
sylancr |
|- ( A e. CC -> ( 1 + ( cos ` A ) ) e. CC ) |
| 72 |
71
|
halfcld |
|- ( A e. CC -> ( ( 1 + ( cos ` A ) ) / 2 ) e. CC ) |
| 73 |
72
|
sqsqrtd |
|- ( A e. CC -> ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) = ( ( 1 + ( cos ` A ) ) / 2 ) ) |
| 74 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 75 |
42 43 74
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 76 |
75
|
fveq2d |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) |
| 77 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
| 78 |
|
cos2t |
|- ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) |
| 79 |
77 78
|
syl |
|- ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) |
| 80 |
76 79
|
eqtr3d |
|- ( A e. CC -> ( cos ` A ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) |
| 81 |
80
|
oveq2d |
|- ( A e. CC -> ( 1 + ( cos ` A ) ) = ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) |
| 82 |
81
|
oveq1d |
|- ( A e. CC -> ( ( 1 + ( cos ` A ) ) / 2 ) = ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) ) |
| 83 |
77
|
coscld |
|- ( A e. CC -> ( cos ` ( A / 2 ) ) e. CC ) |
| 84 |
83
|
sqcld |
|- ( A e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) |
| 85 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 86 |
42 85
|
mpan |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) |
| 87 |
|
pncan3 |
|- ( ( 1 e. CC /\ ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) -> ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 88 |
68 86 87
|
sylancr |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) |
| 89 |
88
|
oveq1d |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) ) |
| 90 |
|
divcan3 |
|- ( ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) |
| 91 |
42 43 90
|
mp3an23 |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) |
| 92 |
89 91
|
eqtrd |
|- ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) |
| 93 |
84 92
|
syl |
|- ( A e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) |
| 94 |
73 82 93
|
3eqtrrd |
|- ( A e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
| 95 |
67 94
|
syl |
|- ( A e. ( -u _pi [,] _pi ) -> ( ( cos ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) ) |
| 96 |
7 34 65 66 95
|
sq11d |
|- ( A e. ( -u _pi [,] _pi ) -> ( cos ` ( A / 2 ) ) = ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |