| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pire |  |-  _pi e. RR | 
						
							| 2 | 1 | renegcli |  |-  -u _pi e. RR | 
						
							| 3 |  | iccssre |  |-  ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) | 
						
							| 4 | 2 1 3 | mp2an |  |-  ( -u _pi [,] _pi ) C_ RR | 
						
							| 5 | 4 | sseli |  |-  ( A e. ( -u _pi [,] _pi ) -> A e. RR ) | 
						
							| 6 | 5 | rehalfcld |  |-  ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. RR ) | 
						
							| 7 | 6 | recoscld |  |-  ( A e. ( -u _pi [,] _pi ) -> ( cos ` ( A / 2 ) ) e. RR ) | 
						
							| 8 |  | 1re |  |-  1 e. RR | 
						
							| 9 | 5 | recoscld |  |-  ( A e. ( -u _pi [,] _pi ) -> ( cos ` A ) e. RR ) | 
						
							| 10 |  | readdcl |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 + ( cos ` A ) ) e. RR ) | 
						
							| 11 | 8 9 10 | sylancr |  |-  ( A e. ( -u _pi [,] _pi ) -> ( 1 + ( cos ` A ) ) e. RR ) | 
						
							| 12 | 11 | rehalfcld |  |-  ( A e. ( -u _pi [,] _pi ) -> ( ( 1 + ( cos ` A ) ) / 2 ) e. RR ) | 
						
							| 13 |  | cosbnd |  |-  ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) | 
						
							| 14 | 13 | simpld |  |-  ( A e. RR -> -u 1 <_ ( cos ` A ) ) | 
						
							| 15 |  | recoscl |  |-  ( A e. RR -> ( cos ` A ) e. RR ) | 
						
							| 16 |  | recn |  |-  ( ( cos ` A ) e. RR -> ( cos ` A ) e. CC ) | 
						
							| 17 |  | recn |  |-  ( 1 e. RR -> 1 e. CC ) | 
						
							| 18 |  | subneg |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( ( cos ` A ) + 1 ) ) | 
						
							| 19 |  | addcom |  |-  ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 + ( cos ` A ) ) = ( ( cos ` A ) + 1 ) ) | 
						
							| 20 | 19 | ancoms |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( 1 + ( cos ` A ) ) = ( ( cos ` A ) + 1 ) ) | 
						
							| 21 | 18 20 | eqtr4d |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) | 
						
							| 22 | 16 17 21 | syl2an |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> 0 <_ ( 1 + ( cos ` A ) ) ) ) | 
						
							| 24 |  | renegcl |  |-  ( 1 e. RR -> -u 1 e. RR ) | 
						
							| 25 |  | subge0 |  |-  ( ( ( cos ` A ) e. RR /\ -u 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) | 
						
							| 26 | 24 25 | sylan2 |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) | 
						
							| 27 | 10 | ancoms |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 1 + ( cos ` A ) ) e. RR ) | 
						
							| 28 |  | halfnneg2 |  |-  ( ( 1 + ( cos ` A ) ) e. RR -> ( 0 <_ ( 1 + ( cos ` A ) ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( 1 + ( cos ` A ) ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 30 | 23 26 29 | 3bitr3d |  |-  ( ( ( cos ` A ) e. RR /\ 1 e. RR ) -> ( -u 1 <_ ( cos ` A ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 31 | 15 8 30 | sylancl |  |-  ( A e. RR -> ( -u 1 <_ ( cos ` A ) <-> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 32 | 14 31 | mpbid |  |-  ( A e. RR -> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) | 
						
							| 33 | 5 32 | syl |  |-  ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( ( 1 + ( cos ` A ) ) / 2 ) ) | 
						
							| 34 | 12 33 | resqrtcld |  |-  ( A e. ( -u _pi [,] _pi ) -> ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) e. RR ) | 
						
							| 35 | 2 1 | elicc2i |  |-  ( A e. ( -u _pi [,] _pi ) <-> ( A e. RR /\ -u _pi <_ A /\ A <_ _pi ) ) | 
						
							| 36 |  | 2re |  |-  2 e. RR | 
						
							| 37 |  | 2pos |  |-  0 < 2 | 
						
							| 38 | 36 37 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 39 |  | lediv1 |  |-  ( ( -u _pi e. RR /\ A e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( -u _pi <_ A <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) ) | 
						
							| 40 | 2 38 39 | mp3an13 |  |-  ( A e. RR -> ( -u _pi <_ A <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) ) | 
						
							| 41 |  | picn |  |-  _pi e. CC | 
						
							| 42 |  | 2cn |  |-  2 e. CC | 
						
							| 43 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 44 |  | divneg |  |-  ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) | 
						
							| 45 | 41 42 43 44 | mp3an |  |-  -u ( _pi / 2 ) = ( -u _pi / 2 ) | 
						
							| 46 | 45 | breq1i |  |-  ( -u ( _pi / 2 ) <_ ( A / 2 ) <-> ( -u _pi / 2 ) <_ ( A / 2 ) ) | 
						
							| 47 | 40 46 | bitr4di |  |-  ( A e. RR -> ( -u _pi <_ A <-> -u ( _pi / 2 ) <_ ( A / 2 ) ) ) | 
						
							| 48 |  | lediv1 |  |-  ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ _pi <-> ( A / 2 ) <_ ( _pi / 2 ) ) ) | 
						
							| 49 | 1 38 48 | mp3an23 |  |-  ( A e. RR -> ( A <_ _pi <-> ( A / 2 ) <_ ( _pi / 2 ) ) ) | 
						
							| 50 | 47 49 | anbi12d |  |-  ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) | 
						
							| 51 |  | rehalfcl |  |-  ( A e. RR -> ( A / 2 ) e. RR ) | 
						
							| 52 | 51 | rexrd |  |-  ( A e. RR -> ( A / 2 ) e. RR* ) | 
						
							| 53 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 54 | 53 | renegcli |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 55 | 54 | rexri |  |-  -u ( _pi / 2 ) e. RR* | 
						
							| 56 | 53 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 57 |  | elicc4 |  |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( A / 2 ) e. RR* ) -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) | 
						
							| 58 | 55 56 57 | mp3an12 |  |-  ( ( A / 2 ) e. RR* -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) | 
						
							| 59 | 52 58 | syl |  |-  ( A e. RR -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) <_ ( A / 2 ) /\ ( A / 2 ) <_ ( _pi / 2 ) ) ) ) | 
						
							| 60 | 50 59 | bitr4d |  |-  ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) <-> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ) | 
						
							| 61 | 60 | biimpd |  |-  ( A e. RR -> ( ( -u _pi <_ A /\ A <_ _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ) | 
						
							| 62 | 61 | 3impib |  |-  ( ( A e. RR /\ -u _pi <_ A /\ A <_ _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 63 | 35 62 | sylbi |  |-  ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) | 
						
							| 64 |  | cosq14ge0 |  |-  ( ( A / 2 ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( cos ` ( A / 2 ) ) ) | 
						
							| 65 | 63 64 | syl |  |-  ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( cos ` ( A / 2 ) ) ) | 
						
							| 66 | 12 33 | sqrtge0d |  |-  ( A e. ( -u _pi [,] _pi ) -> 0 <_ ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 67 | 5 | recnd |  |-  ( A e. ( -u _pi [,] _pi ) -> A e. CC ) | 
						
							| 68 |  | ax-1cn |  |-  1 e. CC | 
						
							| 69 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 70 |  | addcl |  |-  ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 + ( cos ` A ) ) e. CC ) | 
						
							| 71 | 68 69 70 | sylancr |  |-  ( A e. CC -> ( 1 + ( cos ` A ) ) e. CC ) | 
						
							| 72 | 71 | halfcld |  |-  ( A e. CC -> ( ( 1 + ( cos ` A ) ) / 2 ) e. CC ) | 
						
							| 73 | 72 | sqsqrtd |  |-  ( A e. CC -> ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) = ( ( 1 + ( cos ` A ) ) / 2 ) ) | 
						
							| 74 |  | divcan2 |  |-  ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 75 | 42 43 74 | mp3an23 |  |-  ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) | 
						
							| 76 | 75 | fveq2d |  |-  ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( cos ` A ) ) | 
						
							| 77 |  | halfcl |  |-  ( A e. CC -> ( A / 2 ) e. CC ) | 
						
							| 78 |  | cos2t |  |-  ( ( A / 2 ) e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) | 
						
							| 79 | 77 78 | syl |  |-  ( A e. CC -> ( cos ` ( 2 x. ( A / 2 ) ) ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) | 
						
							| 80 | 76 79 | eqtr3d |  |-  ( A e. CC -> ( cos ` A ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( A e. CC -> ( 1 + ( cos ` A ) ) = ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( A e. CC -> ( ( 1 + ( cos ` A ) ) / 2 ) = ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) ) | 
						
							| 83 | 77 | coscld |  |-  ( A e. CC -> ( cos ` ( A / 2 ) ) e. CC ) | 
						
							| 84 | 83 | sqcld |  |-  ( A e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) | 
						
							| 85 |  | mulcl |  |-  ( ( 2 e. CC /\ ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC ) -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) | 
						
							| 86 | 42 85 | mpan |  |-  ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) | 
						
							| 87 |  | pncan3 |  |-  ( ( 1 e. CC /\ ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) e. CC ) -> ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) | 
						
							| 88 | 68 86 87 | sylancr |  |-  ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) = ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) ) | 
						
							| 90 |  | divcan3 |  |-  ( ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) | 
						
							| 91 | 42 43 90 | mp3an23 |  |-  ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) | 
						
							| 92 | 89 91 | eqtrd |  |-  ( ( ( cos ` ( A / 2 ) ) ^ 2 ) e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) | 
						
							| 93 | 84 92 | syl |  |-  ( A e. CC -> ( ( 1 + ( ( 2 x. ( ( cos ` ( A / 2 ) ) ^ 2 ) ) - 1 ) ) / 2 ) = ( ( cos ` ( A / 2 ) ) ^ 2 ) ) | 
						
							| 94 | 73 82 93 | 3eqtrrd |  |-  ( A e. CC -> ( ( cos ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) ) | 
						
							| 95 | 67 94 | syl |  |-  ( A e. ( -u _pi [,] _pi ) -> ( ( cos ` ( A / 2 ) ) ^ 2 ) = ( ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ^ 2 ) ) | 
						
							| 96 | 7 34 65 66 95 | sq11d |  |-  ( A e. ( -u _pi [,] _pi ) -> ( cos ` ( A / 2 ) ) = ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) |