| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re |  |-  0 e. RR | 
						
							| 2 |  | pire |  |-  _pi e. RR | 
						
							| 3 | 2 | rexri |  |-  _pi e. RR* | 
						
							| 4 |  | icossre |  |-  ( ( 0 e. RR /\ _pi e. RR* ) -> ( 0 [,) _pi ) C_ RR ) | 
						
							| 5 | 1 3 4 | mp2an |  |-  ( 0 [,) _pi ) C_ RR | 
						
							| 6 | 5 | sseli |  |-  ( A e. ( 0 [,) _pi ) -> A e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( A e. ( 0 [,) _pi ) -> A e. CC ) | 
						
							| 8 | 7 | halfcld |  |-  ( A e. ( 0 [,) _pi ) -> ( A / 2 ) e. CC ) | 
						
							| 9 | 6 | rehalfcld |  |-  ( A e. ( 0 [,) _pi ) -> ( A / 2 ) e. RR ) | 
						
							| 10 | 9 | rered |  |-  ( A e. ( 0 [,) _pi ) -> ( Re ` ( A / 2 ) ) = ( A / 2 ) ) | 
						
							| 11 |  | elico2 |  |-  ( ( 0 e. RR /\ _pi e. RR* ) -> ( A e. ( 0 [,) _pi ) <-> ( A e. RR /\ 0 <_ A /\ A < _pi ) ) ) | 
						
							| 12 | 1 3 11 | mp2an |  |-  ( A e. ( 0 [,) _pi ) <-> ( A e. RR /\ 0 <_ A /\ A < _pi ) ) | 
						
							| 13 |  | pipos |  |-  0 < _pi | 
						
							| 14 |  | lt0neg2 |  |-  ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) | 
						
							| 15 | 2 14 | ax-mp |  |-  ( 0 < _pi <-> -u _pi < 0 ) | 
						
							| 16 | 13 15 | mpbi |  |-  -u _pi < 0 | 
						
							| 17 | 2 | renegcli |  |-  -u _pi e. RR | 
						
							| 18 |  | ltletr |  |-  ( ( -u _pi e. RR /\ 0 e. RR /\ A e. RR ) -> ( ( -u _pi < 0 /\ 0 <_ A ) -> -u _pi < A ) ) | 
						
							| 19 | 17 1 18 | mp3an12 |  |-  ( A e. RR -> ( ( -u _pi < 0 /\ 0 <_ A ) -> -u _pi < A ) ) | 
						
							| 20 | 16 19 | mpani |  |-  ( A e. RR -> ( 0 <_ A -> -u _pi < A ) ) | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 |  | 2pos |  |-  0 < 2 | 
						
							| 23 | 21 22 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 24 |  | ltdiv1 |  |-  ( ( -u _pi e. RR /\ A e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( -u _pi < A <-> ( -u _pi / 2 ) < ( A / 2 ) ) ) | 
						
							| 25 | 17 23 24 | mp3an13 |  |-  ( A e. RR -> ( -u _pi < A <-> ( -u _pi / 2 ) < ( A / 2 ) ) ) | 
						
							| 26 |  | picn |  |-  _pi e. CC | 
						
							| 27 |  | 2cn |  |-  2 e. CC | 
						
							| 28 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 29 |  | divneg |  |-  ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) | 
						
							| 30 | 26 27 28 29 | mp3an |  |-  -u ( _pi / 2 ) = ( -u _pi / 2 ) | 
						
							| 31 | 30 | breq1i |  |-  ( -u ( _pi / 2 ) < ( A / 2 ) <-> ( -u _pi / 2 ) < ( A / 2 ) ) | 
						
							| 32 | 25 31 | bitr4di |  |-  ( A e. RR -> ( -u _pi < A <-> -u ( _pi / 2 ) < ( A / 2 ) ) ) | 
						
							| 33 | 20 32 | sylibd |  |-  ( A e. RR -> ( 0 <_ A -> -u ( _pi / 2 ) < ( A / 2 ) ) ) | 
						
							| 34 |  | ltdiv1 |  |-  ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 35 | 2 23 34 | mp3an23 |  |-  ( A e. RR -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 36 | 35 | biimpd |  |-  ( A e. RR -> ( A < _pi -> ( A / 2 ) < ( _pi / 2 ) ) ) | 
						
							| 37 | 33 36 | anim12d |  |-  ( A e. RR -> ( ( 0 <_ A /\ A < _pi ) -> ( -u ( _pi / 2 ) < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) ) ) | 
						
							| 38 |  | rehalfcl |  |-  ( A e. RR -> ( A / 2 ) e. RR ) | 
						
							| 39 | 38 | rexrd |  |-  ( A e. RR -> ( A / 2 ) e. RR* ) | 
						
							| 40 |  | halfpire |  |-  ( _pi / 2 ) e. RR | 
						
							| 41 | 40 | renegcli |  |-  -u ( _pi / 2 ) e. RR | 
						
							| 42 | 41 | rexri |  |-  -u ( _pi / 2 ) e. RR* | 
						
							| 43 | 40 | rexri |  |-  ( _pi / 2 ) e. RR* | 
						
							| 44 |  | elioo5 |  |-  ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( A / 2 ) e. RR* ) -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) ) ) | 
						
							| 45 | 42 43 44 | mp3an12 |  |-  ( ( A / 2 ) e. RR* -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) ) ) | 
						
							| 46 | 39 45 | syl |  |-  ( A e. RR -> ( ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( -u ( _pi / 2 ) < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) ) ) | 
						
							| 47 | 37 46 | sylibrd |  |-  ( A e. RR -> ( ( 0 <_ A /\ A < _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) ) | 
						
							| 48 | 47 | 3impib |  |-  ( ( A e. RR /\ 0 <_ A /\ A < _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 49 | 12 48 | sylbi |  |-  ( A e. ( 0 [,) _pi ) -> ( A / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 50 | 10 49 | eqeltrd |  |-  ( A e. ( 0 [,) _pi ) -> ( Re ` ( A / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) | 
						
							| 51 |  | cosne0 |  |-  ( ( ( A / 2 ) e. CC /\ ( Re ` ( A / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( A / 2 ) ) =/= 0 ) | 
						
							| 52 | 8 50 51 | syl2anc |  |-  ( A e. ( 0 [,) _pi ) -> ( cos ` ( A / 2 ) ) =/= 0 ) | 
						
							| 53 |  | tanval |  |-  ( ( ( A / 2 ) e. CC /\ ( cos ` ( A / 2 ) ) =/= 0 ) -> ( tan ` ( A / 2 ) ) = ( ( sin ` ( A / 2 ) ) / ( cos ` ( A / 2 ) ) ) ) | 
						
							| 54 | 8 52 53 | syl2anc |  |-  ( A e. ( 0 [,) _pi ) -> ( tan ` ( A / 2 ) ) = ( ( sin ` ( A / 2 ) ) / ( cos ` ( A / 2 ) ) ) ) | 
						
							| 55 |  | 0xr |  |-  0 e. RR* | 
						
							| 56 |  | elico1 |  |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 [,) _pi ) <-> ( A e. RR* /\ 0 <_ A /\ A < _pi ) ) ) | 
						
							| 57 | 55 3 56 | mp2an |  |-  ( A e. ( 0 [,) _pi ) <-> ( A e. RR* /\ 0 <_ A /\ A < _pi ) ) | 
						
							| 58 | 21 2 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 59 | 58 | rexri |  |-  ( 2 x. _pi ) e. RR* | 
						
							| 60 |  | 1lt2 |  |-  1 < 2 | 
						
							| 61 |  | ltmulgt12 |  |-  ( ( _pi e. RR /\ 2 e. RR /\ 0 < _pi ) -> ( 1 < 2 <-> _pi < ( 2 x. _pi ) ) ) | 
						
							| 62 | 2 21 13 61 | mp3an |  |-  ( 1 < 2 <-> _pi < ( 2 x. _pi ) ) | 
						
							| 63 | 60 62 | mpbi |  |-  _pi < ( 2 x. _pi ) | 
						
							| 64 |  | xrlttr |  |-  ( ( A e. RR* /\ _pi e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( ( A < _pi /\ _pi < ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) ) | 
						
							| 65 | 3 64 | mp3an2 |  |-  ( ( A e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( ( A < _pi /\ _pi < ( 2 x. _pi ) ) -> A < ( 2 x. _pi ) ) ) | 
						
							| 66 | 63 65 | mpan2i |  |-  ( ( A e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A < _pi -> A < ( 2 x. _pi ) ) ) | 
						
							| 67 |  | xrltle |  |-  ( ( A e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A < ( 2 x. _pi ) -> A <_ ( 2 x. _pi ) ) ) | 
						
							| 68 | 66 67 | syld |  |-  ( ( A e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A < _pi -> A <_ ( 2 x. _pi ) ) ) | 
						
							| 69 | 59 68 | mpan2 |  |-  ( A e. RR* -> ( A < _pi -> A <_ ( 2 x. _pi ) ) ) | 
						
							| 70 | 69 | anim2d |  |-  ( A e. RR* -> ( ( 0 <_ A /\ A < _pi ) -> ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) ) ) | 
						
							| 71 |  | elicc4 |  |-  ( ( 0 e. RR* /\ ( 2 x. _pi ) e. RR* /\ A e. RR* ) -> ( A e. ( 0 [,] ( 2 x. _pi ) ) <-> ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) ) ) | 
						
							| 72 | 55 59 71 | mp3an12 |  |-  ( A e. RR* -> ( A e. ( 0 [,] ( 2 x. _pi ) ) <-> ( 0 <_ A /\ A <_ ( 2 x. _pi ) ) ) ) | 
						
							| 73 | 70 72 | sylibrd |  |-  ( A e. RR* -> ( ( 0 <_ A /\ A < _pi ) -> A e. ( 0 [,] ( 2 x. _pi ) ) ) ) | 
						
							| 74 | 73 | 3impib |  |-  ( ( A e. RR* /\ 0 <_ A /\ A < _pi ) -> A e. ( 0 [,] ( 2 x. _pi ) ) ) | 
						
							| 75 | 57 74 | sylbi |  |-  ( A e. ( 0 [,) _pi ) -> A e. ( 0 [,] ( 2 x. _pi ) ) ) | 
						
							| 76 |  | sin2h |  |-  ( A e. ( 0 [,] ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 77 | 75 76 | syl |  |-  ( A e. ( 0 [,) _pi ) -> ( sin ` ( A / 2 ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 78 | 1 2 13 | ltleii |  |-  0 <_ _pi | 
						
							| 79 |  | le0neg2 |  |-  ( _pi e. RR -> ( 0 <_ _pi <-> -u _pi <_ 0 ) ) | 
						
							| 80 | 2 79 | ax-mp |  |-  ( 0 <_ _pi <-> -u _pi <_ 0 ) | 
						
							| 81 | 78 80 | mpbi |  |-  -u _pi <_ 0 | 
						
							| 82 | 17 | rexri |  |-  -u _pi e. RR* | 
						
							| 83 |  | xrletr |  |-  ( ( -u _pi e. RR* /\ 0 e. RR* /\ A e. RR* ) -> ( ( -u _pi <_ 0 /\ 0 <_ A ) -> -u _pi <_ A ) ) | 
						
							| 84 | 82 55 83 | mp3an12 |  |-  ( A e. RR* -> ( ( -u _pi <_ 0 /\ 0 <_ A ) -> -u _pi <_ A ) ) | 
						
							| 85 | 81 84 | mpani |  |-  ( A e. RR* -> ( 0 <_ A -> -u _pi <_ A ) ) | 
						
							| 86 |  | xrltle |  |-  ( ( A e. RR* /\ _pi e. RR* ) -> ( A < _pi -> A <_ _pi ) ) | 
						
							| 87 | 3 86 | mpan2 |  |-  ( A e. RR* -> ( A < _pi -> A <_ _pi ) ) | 
						
							| 88 | 85 87 | anim12d |  |-  ( A e. RR* -> ( ( 0 <_ A /\ A < _pi ) -> ( -u _pi <_ A /\ A <_ _pi ) ) ) | 
						
							| 89 |  | elicc4 |  |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. RR* ) -> ( A e. ( -u _pi [,] _pi ) <-> ( -u _pi <_ A /\ A <_ _pi ) ) ) | 
						
							| 90 | 82 3 89 | mp3an12 |  |-  ( A e. RR* -> ( A e. ( -u _pi [,] _pi ) <-> ( -u _pi <_ A /\ A <_ _pi ) ) ) | 
						
							| 91 | 88 90 | sylibrd |  |-  ( A e. RR* -> ( ( 0 <_ A /\ A < _pi ) -> A e. ( -u _pi [,] _pi ) ) ) | 
						
							| 92 | 91 | 3impib |  |-  ( ( A e. RR* /\ 0 <_ A /\ A < _pi ) -> A e. ( -u _pi [,] _pi ) ) | 
						
							| 93 | 57 92 | sylbi |  |-  ( A e. ( 0 [,) _pi ) -> A e. ( -u _pi [,] _pi ) ) | 
						
							| 94 |  | cos2h |  |-  ( A e. ( -u _pi [,] _pi ) -> ( cos ` ( A / 2 ) ) = ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( A e. ( 0 [,) _pi ) -> ( cos ` ( A / 2 ) ) = ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) | 
						
							| 96 | 77 95 | oveq12d |  |-  ( A e. ( 0 [,) _pi ) -> ( ( sin ` ( A / 2 ) ) / ( cos ` ( A / 2 ) ) ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) / ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) ) | 
						
							| 97 | 54 96 | eqtrd |  |-  ( A e. ( 0 [,) _pi ) -> ( tan ` ( A / 2 ) ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) / ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) ) | 
						
							| 98 |  | 1re |  |-  1 e. RR | 
						
							| 99 | 6 | recoscld |  |-  ( A e. ( 0 [,) _pi ) -> ( cos ` A ) e. RR ) | 
						
							| 100 |  | resubcl |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 - ( cos ` A ) ) e. RR ) | 
						
							| 101 | 98 99 100 | sylancr |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 - ( cos ` A ) ) e. RR ) | 
						
							| 102 | 101 | rehalfcld |  |-  ( A e. ( 0 [,) _pi ) -> ( ( 1 - ( cos ` A ) ) / 2 ) e. RR ) | 
						
							| 103 |  | cosbnd |  |-  ( A e. RR -> ( -u 1 <_ ( cos ` A ) /\ ( cos ` A ) <_ 1 ) ) | 
						
							| 104 | 103 | simprd |  |-  ( A e. RR -> ( cos ` A ) <_ 1 ) | 
						
							| 105 |  | recoscl |  |-  ( A e. RR -> ( cos ` A ) e. RR ) | 
						
							| 106 |  | subge0 |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> ( cos ` A ) <_ 1 ) ) | 
						
							| 107 |  | halfnneg2 |  |-  ( ( 1 - ( cos ` A ) ) e. RR -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 108 | 100 107 | syl |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 0 <_ ( 1 - ( cos ` A ) ) <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 109 | 106 108 | bitr3d |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( ( cos ` A ) <_ 1 <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 110 | 98 105 109 | sylancr |  |-  ( A e. RR -> ( ( cos ` A ) <_ 1 <-> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) ) | 
						
							| 111 | 104 110 | mpbid |  |-  ( A e. RR -> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) | 
						
							| 112 | 6 111 | syl |  |-  ( A e. ( 0 [,) _pi ) -> 0 <_ ( ( 1 - ( cos ` A ) ) / 2 ) ) | 
						
							| 113 |  | readdcl |  |-  ( ( 1 e. RR /\ ( cos ` A ) e. RR ) -> ( 1 + ( cos ` A ) ) e. RR ) | 
						
							| 114 | 98 99 113 | sylancr |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 + ( cos ` A ) ) e. RR ) | 
						
							| 115 | 103 | simpld |  |-  ( A e. RR -> -u 1 <_ ( cos ` A ) ) | 
						
							| 116 | 98 | renegcli |  |-  -u 1 e. RR | 
						
							| 117 |  | subge0 |  |-  ( ( ( cos ` A ) e. RR /\ -u 1 e. RR ) -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) | 
						
							| 118 | 105 116 117 | sylancl |  |-  ( A e. RR -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> -u 1 <_ ( cos ` A ) ) ) | 
						
							| 119 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 120 | 119 | coscld |  |-  ( A e. RR -> ( cos ` A ) e. CC ) | 
						
							| 121 |  | ax-1cn |  |-  1 e. CC | 
						
							| 122 |  | subneg |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( ( cos ` A ) + 1 ) ) | 
						
							| 123 |  | addcom |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) + 1 ) = ( 1 + ( cos ` A ) ) ) | 
						
							| 124 | 122 123 | eqtrd |  |-  ( ( ( cos ` A ) e. CC /\ 1 e. CC ) -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) | 
						
							| 125 | 120 121 124 | sylancl |  |-  ( A e. RR -> ( ( cos ` A ) - -u 1 ) = ( 1 + ( cos ` A ) ) ) | 
						
							| 126 | 125 | breq2d |  |-  ( A e. RR -> ( 0 <_ ( ( cos ` A ) - -u 1 ) <-> 0 <_ ( 1 + ( cos ` A ) ) ) ) | 
						
							| 127 | 118 126 | bitr3d |  |-  ( A e. RR -> ( -u 1 <_ ( cos ` A ) <-> 0 <_ ( 1 + ( cos ` A ) ) ) ) | 
						
							| 128 | 115 127 | mpbid |  |-  ( A e. RR -> 0 <_ ( 1 + ( cos ` A ) ) ) | 
						
							| 129 | 6 128 | syl |  |-  ( A e. ( 0 [,) _pi ) -> 0 <_ ( 1 + ( cos ` A ) ) ) | 
						
							| 130 |  | snunioo |  |-  ( ( 0 e. RR* /\ _pi e. RR* /\ 0 < _pi ) -> ( { 0 } u. ( 0 (,) _pi ) ) = ( 0 [,) _pi ) ) | 
						
							| 131 | 55 3 13 130 | mp3an |  |-  ( { 0 } u. ( 0 (,) _pi ) ) = ( 0 [,) _pi ) | 
						
							| 132 | 131 | eleq2i |  |-  ( A e. ( { 0 } u. ( 0 (,) _pi ) ) <-> A e. ( 0 [,) _pi ) ) | 
						
							| 133 |  | elun |  |-  ( A e. ( { 0 } u. ( 0 (,) _pi ) ) <-> ( A e. { 0 } \/ A e. ( 0 (,) _pi ) ) ) | 
						
							| 134 | 132 133 | bitr3i |  |-  ( A e. ( 0 [,) _pi ) <-> ( A e. { 0 } \/ A e. ( 0 (,) _pi ) ) ) | 
						
							| 135 |  | elsni |  |-  ( A e. { 0 } -> A = 0 ) | 
						
							| 136 |  | fveq2 |  |-  ( A = 0 -> ( cos ` A ) = ( cos ` 0 ) ) | 
						
							| 137 |  | cos0 |  |-  ( cos ` 0 ) = 1 | 
						
							| 138 | 136 137 | eqtrdi |  |-  ( A = 0 -> ( cos ` A ) = 1 ) | 
						
							| 139 | 138 | oveq2d |  |-  ( A = 0 -> ( 1 + ( cos ` A ) ) = ( 1 + 1 ) ) | 
						
							| 140 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 141 | 139 140 | eqtr4di |  |-  ( A = 0 -> ( 1 + ( cos ` A ) ) = 2 ) | 
						
							| 142 | 28 | a1i |  |-  ( A = 0 -> 2 =/= 0 ) | 
						
							| 143 | 141 142 | eqnetrd |  |-  ( A = 0 -> ( 1 + ( cos ` A ) ) =/= 0 ) | 
						
							| 144 | 135 143 | syl |  |-  ( A e. { 0 } -> ( 1 + ( cos ` A ) ) =/= 0 ) | 
						
							| 145 |  | sinq12gt0 |  |-  ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) | 
						
							| 146 |  | ltne |  |-  ( ( 0 e. RR /\ 0 < ( sin ` A ) ) -> ( sin ` A ) =/= 0 ) | 
						
							| 147 | 1 146 | mpan |  |-  ( 0 < ( sin ` A ) -> ( sin ` A ) =/= 0 ) | 
						
							| 148 |  | elioore |  |-  ( A e. ( 0 (,) _pi ) -> A e. RR ) | 
						
							| 149 | 148 | recnd |  |-  ( A e. ( 0 (,) _pi ) -> A e. CC ) | 
						
							| 150 |  | oveq1 |  |-  ( -u 1 = ( cos ` A ) -> ( -u 1 ^ 2 ) = ( ( cos ` A ) ^ 2 ) ) | 
						
							| 151 | 150 | a1i |  |-  ( A e. CC -> ( -u 1 = ( cos ` A ) -> ( -u 1 ^ 2 ) = ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 152 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 153 | 152 | eqeq1i |  |-  ( -u 1 = ( cos ` A ) <-> ( 0 - 1 ) = ( cos ` A ) ) | 
						
							| 154 |  | coscl |  |-  ( A e. CC -> ( cos ` A ) e. CC ) | 
						
							| 155 |  | 0cn |  |-  0 e. CC | 
						
							| 156 |  | subadd |  |-  ( ( 0 e. CC /\ 1 e. CC /\ ( cos ` A ) e. CC ) -> ( ( 0 - 1 ) = ( cos ` A ) <-> ( 1 + ( cos ` A ) ) = 0 ) ) | 
						
							| 157 | 155 121 156 | mp3an12 |  |-  ( ( cos ` A ) e. CC -> ( ( 0 - 1 ) = ( cos ` A ) <-> ( 1 + ( cos ` A ) ) = 0 ) ) | 
						
							| 158 | 154 157 | syl |  |-  ( A e. CC -> ( ( 0 - 1 ) = ( cos ` A ) <-> ( 1 + ( cos ` A ) ) = 0 ) ) | 
						
							| 159 | 153 158 | bitrid |  |-  ( A e. CC -> ( -u 1 = ( cos ` A ) <-> ( 1 + ( cos ` A ) ) = 0 ) ) | 
						
							| 160 |  | sincl |  |-  ( A e. CC -> ( sin ` A ) e. CC ) | 
						
							| 161 | 160 | sqcld |  |-  ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) | 
						
							| 162 |  | 0cnd |  |-  ( A e. CC -> 0 e. CC ) | 
						
							| 163 | 154 | sqcld |  |-  ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) | 
						
							| 164 | 161 162 163 | addcan2d |  |-  ( A e. CC -> ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( 0 + ( ( cos ` A ) ^ 2 ) ) <-> ( ( sin ` A ) ^ 2 ) = 0 ) ) | 
						
							| 165 |  | sincossq |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) | 
						
							| 166 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 167 | 165 166 | eqtr4di |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( -u 1 ^ 2 ) ) | 
						
							| 168 | 163 | addlidd |  |-  ( A e. CC -> ( 0 + ( ( cos ` A ) ^ 2 ) ) = ( ( cos ` A ) ^ 2 ) ) | 
						
							| 169 | 167 168 | eqeq12d |  |-  ( A e. CC -> ( ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( 0 + ( ( cos ` A ) ^ 2 ) ) <-> ( -u 1 ^ 2 ) = ( ( cos ` A ) ^ 2 ) ) ) | 
						
							| 170 |  | sqeq0 |  |-  ( ( sin ` A ) e. CC -> ( ( ( sin ` A ) ^ 2 ) = 0 <-> ( sin ` A ) = 0 ) ) | 
						
							| 171 | 160 170 | syl |  |-  ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) = 0 <-> ( sin ` A ) = 0 ) ) | 
						
							| 172 | 164 169 171 | 3bitr3d |  |-  ( A e. CC -> ( ( -u 1 ^ 2 ) = ( ( cos ` A ) ^ 2 ) <-> ( sin ` A ) = 0 ) ) | 
						
							| 173 | 151 159 172 | 3imtr3d |  |-  ( A e. CC -> ( ( 1 + ( cos ` A ) ) = 0 -> ( sin ` A ) = 0 ) ) | 
						
							| 174 | 149 173 | syl |  |-  ( A e. ( 0 (,) _pi ) -> ( ( 1 + ( cos ` A ) ) = 0 -> ( sin ` A ) = 0 ) ) | 
						
							| 175 | 174 | necon3d |  |-  ( A e. ( 0 (,) _pi ) -> ( ( sin ` A ) =/= 0 -> ( 1 + ( cos ` A ) ) =/= 0 ) ) | 
						
							| 176 | 147 175 | syl5 |  |-  ( A e. ( 0 (,) _pi ) -> ( 0 < ( sin ` A ) -> ( 1 + ( cos ` A ) ) =/= 0 ) ) | 
						
							| 177 | 145 176 | mpd |  |-  ( A e. ( 0 (,) _pi ) -> ( 1 + ( cos ` A ) ) =/= 0 ) | 
						
							| 178 | 144 177 | jaoi |  |-  ( ( A e. { 0 } \/ A e. ( 0 (,) _pi ) ) -> ( 1 + ( cos ` A ) ) =/= 0 ) | 
						
							| 179 | 134 178 | sylbi |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 + ( cos ` A ) ) =/= 0 ) | 
						
							| 180 | 114 129 179 | ne0gt0d |  |-  ( A e. ( 0 [,) _pi ) -> 0 < ( 1 + ( cos ` A ) ) ) | 
						
							| 181 | 114 180 | elrpd |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 + ( cos ` A ) ) e. RR+ ) | 
						
							| 182 | 181 | rphalfcld |  |-  ( A e. ( 0 [,) _pi ) -> ( ( 1 + ( cos ` A ) ) / 2 ) e. RR+ ) | 
						
							| 183 | 102 112 182 | sqrtdivd |  |-  ( A e. ( 0 [,) _pi ) -> ( sqrt ` ( ( ( 1 - ( cos ` A ) ) / 2 ) / ( ( 1 + ( cos ` A ) ) / 2 ) ) ) = ( ( sqrt ` ( ( 1 - ( cos ` A ) ) / 2 ) ) / ( sqrt ` ( ( 1 + ( cos ` A ) ) / 2 ) ) ) ) | 
						
							| 184 | 7 | coscld |  |-  ( A e. ( 0 [,) _pi ) -> ( cos ` A ) e. CC ) | 
						
							| 185 |  | subcl |  |-  ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 - ( cos ` A ) ) e. CC ) | 
						
							| 186 | 121 184 185 | sylancr |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 - ( cos ` A ) ) e. CC ) | 
						
							| 187 |  | addcl |  |-  ( ( 1 e. CC /\ ( cos ` A ) e. CC ) -> ( 1 + ( cos ` A ) ) e. CC ) | 
						
							| 188 | 121 184 187 | sylancr |  |-  ( A e. ( 0 [,) _pi ) -> ( 1 + ( cos ` A ) ) e. CC ) | 
						
							| 189 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 190 |  | divcan7 |  |-  ( ( ( 1 - ( cos ` A ) ) e. CC /\ ( ( 1 + ( cos ` A ) ) e. CC /\ ( 1 + ( cos ` A ) ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 1 - ( cos ` A ) ) / 2 ) / ( ( 1 + ( cos ` A ) ) / 2 ) ) = ( ( 1 - ( cos ` A ) ) / ( 1 + ( cos ` A ) ) ) ) | 
						
							| 191 | 189 190 | mp3an3 |  |-  ( ( ( 1 - ( cos ` A ) ) e. CC /\ ( ( 1 + ( cos ` A ) ) e. CC /\ ( 1 + ( cos ` A ) ) =/= 0 ) ) -> ( ( ( 1 - ( cos ` A ) ) / 2 ) / ( ( 1 + ( cos ` A ) ) / 2 ) ) = ( ( 1 - ( cos ` A ) ) / ( 1 + ( cos ` A ) ) ) ) | 
						
							| 192 | 186 188 179 191 | syl12anc |  |-  ( A e. ( 0 [,) _pi ) -> ( ( ( 1 - ( cos ` A ) ) / 2 ) / ( ( 1 + ( cos ` A ) ) / 2 ) ) = ( ( 1 - ( cos ` A ) ) / ( 1 + ( cos ` A ) ) ) ) | 
						
							| 193 | 192 | fveq2d |  |-  ( A e. ( 0 [,) _pi ) -> ( sqrt ` ( ( ( 1 - ( cos ` A ) ) / 2 ) / ( ( 1 + ( cos ` A ) ) / 2 ) ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / ( 1 + ( cos ` A ) ) ) ) ) | 
						
							| 194 | 97 183 193 | 3eqtr2d |  |-  ( A e. ( 0 [,) _pi ) -> ( tan ` ( A / 2 ) ) = ( sqrt ` ( ( 1 - ( cos ` A ) ) / ( 1 + ( cos ` A ) ) ) ) ) |