| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 3 | 2 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 4 |  | icossre | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ* )  →  ( 0 [,) π )  ⊆  ℝ ) | 
						
							| 5 | 1 3 4 | mp2an | ⊢ ( 0 [,) π )  ⊆  ℝ | 
						
							| 6 | 5 | sseli | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  𝐴  ∈  ℂ ) | 
						
							| 8 | 7 | halfcld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 9 | 6 | rehalfcld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 10 | 9 | rered | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ℜ ‘ ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) | 
						
							| 11 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 [,) π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  <  π ) ) ) | 
						
							| 12 | 1 3 11 | mp2an | ⊢ ( 𝐴  ∈  ( 0 [,) π )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  <  π ) ) | 
						
							| 13 |  | pipos | ⊢ 0  <  π | 
						
							| 14 |  | lt0neg2 | ⊢ ( π  ∈  ℝ  →  ( 0  <  π  ↔  - π  <  0 ) ) | 
						
							| 15 | 2 14 | ax-mp | ⊢ ( 0  <  π  ↔  - π  <  0 ) | 
						
							| 16 | 13 15 | mpbi | ⊢ - π  <  0 | 
						
							| 17 | 2 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 18 |  | ltletr | ⊢ ( ( - π  ∈  ℝ  ∧  0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( - π  <  0  ∧  0  ≤  𝐴 )  →  - π  <  𝐴 ) ) | 
						
							| 19 | 17 1 18 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( - π  <  0  ∧  0  ≤  𝐴 )  →  - π  <  𝐴 ) ) | 
						
							| 20 | 16 19 | mpani | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  →  - π  <  𝐴 ) ) | 
						
							| 21 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 22 |  | 2pos | ⊢ 0  <  2 | 
						
							| 23 | 21 22 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 24 |  | ltdiv1 | ⊢ ( ( - π  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( - π  <  𝐴  ↔  ( - π  /  2 )  <  ( 𝐴  /  2 ) ) ) | 
						
							| 25 | 17 23 24 | mp3an13 | ⊢ ( 𝐴  ∈  ℝ  →  ( - π  <  𝐴  ↔  ( - π  /  2 )  <  ( 𝐴  /  2 ) ) ) | 
						
							| 26 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 27 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 28 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 29 |  | divneg | ⊢ ( ( π  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  - ( π  /  2 )  =  ( - π  /  2 ) ) | 
						
							| 30 | 26 27 28 29 | mp3an | ⊢ - ( π  /  2 )  =  ( - π  /  2 ) | 
						
							| 31 | 30 | breq1i | ⊢ ( - ( π  /  2 )  <  ( 𝐴  /  2 )  ↔  ( - π  /  2 )  <  ( 𝐴  /  2 ) ) | 
						
							| 32 | 25 31 | bitr4di | ⊢ ( 𝐴  ∈  ℝ  →  ( - π  <  𝐴  ↔  - ( π  /  2 )  <  ( 𝐴  /  2 ) ) ) | 
						
							| 33 | 20 32 | sylibd | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  →  - ( π  /  2 )  <  ( 𝐴  /  2 ) ) ) | 
						
							| 34 |  | ltdiv1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐴  <  π  ↔  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) | 
						
							| 35 | 2 23 34 | mp3an23 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  π  ↔  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) | 
						
							| 36 | 35 | biimpd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  π  →  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) | 
						
							| 37 | 33 36 | anim12d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  ( - ( π  /  2 )  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) ) | 
						
							| 38 |  | rehalfcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 39 | 38 | rexrd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ* ) | 
						
							| 40 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 41 | 40 | renegcli | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 42 | 41 | rexri | ⊢ - ( π  /  2 )  ∈  ℝ* | 
						
							| 43 | 40 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 44 |  | elioo5 | ⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ*  ∧  ( 𝐴  /  2 )  ∈  ℝ* )  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( - ( π  /  2 )  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) ) | 
						
							| 45 | 42 43 44 | mp3an12 | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ*  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( - ( π  /  2 )  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) ) | 
						
							| 46 | 39 45 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ↔  ( - ( π  /  2 )  <  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  <  ( π  /  2 ) ) ) ) | 
						
							| 47 | 37 46 | sylibrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) ) | 
						
							| 48 | 47 | 3impib | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  <  π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 49 | 12 48 | sylbi | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 50 | 10 49 | eqeltrd | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ℜ ‘ ( 𝐴  /  2 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 51 |  | cosne0 | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℂ  ∧  ( ℜ ‘ ( 𝐴  /  2 ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( cos ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 52 | 8 50 51 | syl2anc | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( cos ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 53 |  | tanval | ⊢ ( ( ( 𝐴  /  2 )  ∈  ℂ  ∧  ( cos ‘ ( 𝐴  /  2 ) )  ≠  0 )  →  ( tan ‘ ( 𝐴  /  2 ) )  =  ( ( sin ‘ ( 𝐴  /  2 ) )  /  ( cos ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 54 | 8 52 53 | syl2anc | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( tan ‘ ( 𝐴  /  2 ) )  =  ( ( sin ‘ ( 𝐴  /  2 ) )  /  ( cos ‘ ( 𝐴  /  2 ) ) ) ) | 
						
							| 55 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 56 |  | elico1 | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 [,) π )  ↔  ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  π ) ) ) | 
						
							| 57 | 55 3 56 | mp2an | ⊢ ( 𝐴  ∈  ( 0 [,) π )  ↔  ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  π ) ) | 
						
							| 58 | 21 2 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 59 | 58 | rexri | ⊢ ( 2  ·  π )  ∈  ℝ* | 
						
							| 60 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 61 |  | ltmulgt12 | ⊢ ( ( π  ∈  ℝ  ∧  2  ∈  ℝ  ∧  0  <  π )  →  ( 1  <  2  ↔  π  <  ( 2  ·  π ) ) ) | 
						
							| 62 | 2 21 13 61 | mp3an | ⊢ ( 1  <  2  ↔  π  <  ( 2  ·  π ) ) | 
						
							| 63 | 60 62 | mpbi | ⊢ π  <  ( 2  ·  π ) | 
						
							| 64 |  | xrlttr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( ( 𝐴  <  π  ∧  π  <  ( 2  ·  π ) )  →  𝐴  <  ( 2  ·  π ) ) ) | 
						
							| 65 | 3 64 | mp3an2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( ( 𝐴  <  π  ∧  π  <  ( 2  ·  π ) )  →  𝐴  <  ( 2  ·  π ) ) ) | 
						
							| 66 | 63 65 | mpan2i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( 𝐴  <  π  →  𝐴  <  ( 2  ·  π ) ) ) | 
						
							| 67 |  | xrltle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( 𝐴  <  ( 2  ·  π )  →  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 68 | 66 67 | syld | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ* )  →  ( 𝐴  <  π  →  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 69 | 59 68 | mpan2 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  <  π  →  𝐴  ≤  ( 2  ·  π ) ) ) | 
						
							| 70 | 69 | anim2d | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) ) ) ) | 
						
							| 71 |  | elicc4 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 2  ·  π )  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  ↔  ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) ) ) ) | 
						
							| 72 | 55 59 71 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  ↔  ( 0  ≤  𝐴  ∧  𝐴  ≤  ( 2  ·  π ) ) ) ) | 
						
							| 73 | 70 72 | sylibrd | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  𝐴  ∈  ( 0 [,] ( 2  ·  π ) ) ) ) | 
						
							| 74 | 73 | 3impib | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  π )  →  𝐴  ∈  ( 0 [,] ( 2  ·  π ) ) ) | 
						
							| 75 | 57 74 | sylbi | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  𝐴  ∈  ( 0 [,] ( 2  ·  π ) ) ) | 
						
							| 76 |  | sin2h | ⊢ ( 𝐴  ∈  ( 0 [,] ( 2  ·  π ) )  →  ( sin ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( sin ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 78 | 1 2 13 | ltleii | ⊢ 0  ≤  π | 
						
							| 79 |  | le0neg2 | ⊢ ( π  ∈  ℝ  →  ( 0  ≤  π  ↔  - π  ≤  0 ) ) | 
						
							| 80 | 2 79 | ax-mp | ⊢ ( 0  ≤  π  ↔  - π  ≤  0 ) | 
						
							| 81 | 78 80 | mpbi | ⊢ - π  ≤  0 | 
						
							| 82 | 17 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 83 |  | xrletr | ⊢ ( ( - π  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ( - π  ≤  0  ∧  0  ≤  𝐴 )  →  - π  ≤  𝐴 ) ) | 
						
							| 84 | 82 55 83 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( - π  ≤  0  ∧  0  ≤  𝐴 )  →  - π  ≤  𝐴 ) ) | 
						
							| 85 | 81 84 | mpani | ⊢ ( 𝐴  ∈  ℝ*  →  ( 0  ≤  𝐴  →  - π  ≤  𝐴 ) ) | 
						
							| 86 |  | xrltle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( 𝐴  <  π  →  𝐴  ≤  π ) ) | 
						
							| 87 | 3 86 | mpan2 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  <  π  →  𝐴  ≤  π ) ) | 
						
							| 88 | 85 87 | anim12d | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  ( - π  ≤  𝐴  ∧  𝐴  ≤  π ) ) ) | 
						
							| 89 |  | elicc4 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐴  ∈  ( - π [,] π )  ↔  ( - π  ≤  𝐴  ∧  𝐴  ≤  π ) ) ) | 
						
							| 90 | 82 3 89 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  ∈  ( - π [,] π )  ↔  ( - π  ≤  𝐴  ∧  𝐴  ≤  π ) ) ) | 
						
							| 91 | 88 90 | sylibrd | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( 0  ≤  𝐴  ∧  𝐴  <  π )  →  𝐴  ∈  ( - π [,] π ) ) ) | 
						
							| 92 | 91 | 3impib | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴  ∧  𝐴  <  π )  →  𝐴  ∈  ( - π [,] π ) ) | 
						
							| 93 | 57 92 | sylbi | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  𝐴  ∈  ( - π [,] π ) ) | 
						
							| 94 |  | cos2h | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( cos ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 95 | 93 94 | syl | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( cos ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 96 | 77 95 | oveq12d | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ( sin ‘ ( 𝐴  /  2 ) )  /  ( cos ‘ ( 𝐴  /  2 ) ) )  =  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) )  /  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) ) | 
						
							| 97 | 54 96 | eqtrd | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( tan ‘ ( 𝐴  /  2 ) )  =  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) )  /  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) ) | 
						
							| 98 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 99 | 6 | recoscld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 100 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 101 | 98 99 100 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 102 | 101 | rehalfcld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 103 |  | cosbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 104 | 103 | simprd | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ≤  1 ) | 
						
							| 105 |  | recoscl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 106 |  | subge0 | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 107 |  | halfnneg2 | ⊢ ( ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 108 | 100 107 | syl | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 0  ≤  ( 1  −  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 109 | 106 108 | bitr3d | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( ( cos ‘ 𝐴 )  ≤  1  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 110 | 98 105 109 | sylancr | ⊢ ( 𝐴  ∈  ℝ  →  ( ( cos ‘ 𝐴 )  ≤  1  ↔  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 111 | 104 110 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 112 | 6 111 | syl | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  0  ≤  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 113 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 114 | 98 99 113 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 115 | 103 | simpld | ⊢ ( 𝐴  ∈  ℝ  →  - 1  ≤  ( cos ‘ 𝐴 ) ) | 
						
							| 116 | 98 | renegcli | ⊢ - 1  ∈  ℝ | 
						
							| 117 |  | subge0 | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  - 1  ∈  ℝ )  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  - 1  ≤  ( cos ‘ 𝐴 ) ) ) | 
						
							| 118 | 105 116 117 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  - 1  ≤  ( cos ‘ 𝐴 ) ) ) | 
						
							| 119 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 120 | 119 | coscld | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 121 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 122 |  | subneg | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( ( cos ‘ 𝐴 )  +  1 ) ) | 
						
							| 123 |  | addcom | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  +  1 )  =  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 124 | 122 123 | eqtrd | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 125 | 120 121 124 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 126 | 125 | breq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  0  ≤  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 127 | 118 126 | bitr3d | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ↔  0  ≤  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 128 | 115 127 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 129 | 6 128 | syl | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  0  ≤  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 130 |  | snunioo | ⊢ ( ( 0  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  0  <  π )  →  ( { 0 }  ∪  ( 0 (,) π ) )  =  ( 0 [,) π ) ) | 
						
							| 131 | 55 3 13 130 | mp3an | ⊢ ( { 0 }  ∪  ( 0 (,) π ) )  =  ( 0 [,) π ) | 
						
							| 132 | 131 | eleq2i | ⊢ ( 𝐴  ∈  ( { 0 }  ∪  ( 0 (,) π ) )  ↔  𝐴  ∈  ( 0 [,) π ) ) | 
						
							| 133 |  | elun | ⊢ ( 𝐴  ∈  ( { 0 }  ∪  ( 0 (,) π ) )  ↔  ( 𝐴  ∈  { 0 }  ∨  𝐴  ∈  ( 0 (,) π ) ) ) | 
						
							| 134 | 132 133 | bitr3i | ⊢ ( 𝐴  ∈  ( 0 [,) π )  ↔  ( 𝐴  ∈  { 0 }  ∨  𝐴  ∈  ( 0 (,) π ) ) ) | 
						
							| 135 |  | elsni | ⊢ ( 𝐴  ∈  { 0 }  →  𝐴  =  0 ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( cos ‘ 𝐴 )  =  ( cos ‘ 0 ) ) | 
						
							| 137 |  | cos0 | ⊢ ( cos ‘ 0 )  =  1 | 
						
							| 138 | 136 137 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( cos ‘ 𝐴 )  =  1 ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( 𝐴  =  0  →  ( 1  +  ( cos ‘ 𝐴 ) )  =  ( 1  +  1 ) ) | 
						
							| 140 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 141 | 139 140 | eqtr4di | ⊢ ( 𝐴  =  0  →  ( 1  +  ( cos ‘ 𝐴 ) )  =  2 ) | 
						
							| 142 | 28 | a1i | ⊢ ( 𝐴  =  0  →  2  ≠  0 ) | 
						
							| 143 | 141 142 | eqnetrd | ⊢ ( 𝐴  =  0  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 144 | 135 143 | syl | ⊢ ( 𝐴  ∈  { 0 }  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 145 |  | sinq12gt0 | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  0  <  ( sin ‘ 𝐴 ) ) | 
						
							| 146 |  | ltne | ⊢ ( ( 0  ∈  ℝ  ∧  0  <  ( sin ‘ 𝐴 ) )  →  ( sin ‘ 𝐴 )  ≠  0 ) | 
						
							| 147 | 1 146 | mpan | ⊢ ( 0  <  ( sin ‘ 𝐴 )  →  ( sin ‘ 𝐴 )  ≠  0 ) | 
						
							| 148 |  | elioore | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  𝐴  ∈  ℝ ) | 
						
							| 149 | 148 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  𝐴  ∈  ℂ ) | 
						
							| 150 |  | oveq1 | ⊢ ( - 1  =  ( cos ‘ 𝐴 )  →  ( - 1 ↑ 2 )  =  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 151 | 150 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  =  ( cos ‘ 𝐴 )  →  ( - 1 ↑ 2 )  =  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 152 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 153 | 152 | eqeq1i | ⊢ ( - 1  =  ( cos ‘ 𝐴 )  ↔  ( 0  −  1 )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 154 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 155 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 156 |  | subadd | ⊢ ( ( 0  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( ( 0  −  1 )  =  ( cos ‘ 𝐴 )  ↔  ( 1  +  ( cos ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 157 | 155 121 156 | mp3an12 | ⊢ ( ( cos ‘ 𝐴 )  ∈  ℂ  →  ( ( 0  −  1 )  =  ( cos ‘ 𝐴 )  ↔  ( 1  +  ( cos ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 158 | 154 157 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 0  −  1 )  =  ( cos ‘ 𝐴 )  ↔  ( 1  +  ( cos ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 159 | 153 158 | bitrid | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  =  ( cos ‘ 𝐴 )  ↔  ( 1  +  ( cos ‘ 𝐴 ) )  =  0 ) ) | 
						
							| 160 |  | sincl | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 161 | 160 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 162 |  | 0cnd | ⊢ ( 𝐴  ∈  ℂ  →  0  ∈  ℂ ) | 
						
							| 163 | 154 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ 𝐴 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 164 | 161 162 163 | addcan2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( 0  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  ↔  ( ( sin ‘ 𝐴 ) ↑ 2 )  =  0 ) ) | 
						
							| 165 |  | sincossq | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  1 ) | 
						
							| 166 |  | neg1sqe1 | ⊢ ( - 1 ↑ 2 )  =  1 | 
						
							| 167 | 165 166 | eqtr4di | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( - 1 ↑ 2 ) ) | 
						
							| 168 | 163 | addlidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) | 
						
							| 169 | 167 168 | eqeq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( sin ‘ 𝐴 ) ↑ 2 )  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  =  ( 0  +  ( ( cos ‘ 𝐴 ) ↑ 2 ) )  ↔  ( - 1 ↑ 2 )  =  ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) | 
						
							| 170 |  | sqeq0 | ⊢ ( ( sin ‘ 𝐴 )  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  =  0  ↔  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 171 | 160 170 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( sin ‘ 𝐴 ) ↑ 2 )  =  0  ↔  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 172 | 164 169 171 | 3bitr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( - 1 ↑ 2 )  =  ( ( cos ‘ 𝐴 ) ↑ 2 )  ↔  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 173 | 151 159 172 | 3imtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  =  0  →  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 174 | 149 173 | syl | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  =  0  →  ( sin ‘ 𝐴 )  =  0 ) ) | 
						
							| 175 | 174 | necon3d | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  ( ( sin ‘ 𝐴 )  ≠  0  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) ) | 
						
							| 176 | 147 175 | syl5 | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  ( 0  <  ( sin ‘ 𝐴 )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) ) | 
						
							| 177 | 145 176 | mpd | ⊢ ( 𝐴  ∈  ( 0 (,) π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 178 | 144 177 | jaoi | ⊢ ( ( 𝐴  ∈  { 0 }  ∨  𝐴  ∈  ( 0 (,) π ) )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 179 | 134 178 | sylbi | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) | 
						
							| 180 | 114 129 179 | ne0gt0d | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  0  <  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 181 | 114 180 | elrpd | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 182 | 181 | rphalfcld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℝ+ ) | 
						
							| 183 | 102 112 182 | sqrtdivd | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( √ ‘ ( ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  /  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) )  =  ( ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 ) )  /  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) ) | 
						
							| 184 | 7 | coscld | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 185 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 186 | 121 184 185 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 187 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 188 | 121 184 187 | sylancr | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 189 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 190 |  | divcan7 | ⊢ ( ( ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ  ∧  ( ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ  ∧  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  /  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) )  =  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 191 | 189 190 | mp3an3 | ⊢ ( ( ( 1  −  ( cos ‘ 𝐴 ) )  ∈  ℂ  ∧  ( ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ  ∧  ( 1  +  ( cos ‘ 𝐴 ) )  ≠  0 ) )  →  ( ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  /  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) )  =  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 192 | 186 188 179 191 | syl12anc | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  /  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) )  =  ( ( 1  −  ( cos ‘ 𝐴 ) )  /  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 193 | 192 | fveq2d | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( √ ‘ ( ( ( 1  −  ( cos ‘ 𝐴 ) )  /  2 )  /  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) )  =  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) ) | 
						
							| 194 | 97 183 193 | 3eqtr2d | ⊢ ( 𝐴  ∈  ( 0 [,) π )  →  ( tan ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  −  ( cos ‘ 𝐴 ) )  /  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) ) |