Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
โข 0 โ โ |
2 |
|
pire |
โข ฯ โ โ |
3 |
2
|
rexri |
โข ฯ โ โ* |
4 |
|
icossre |
โข ( ( 0 โ โ โง ฯ โ โ* ) โ ( 0 [,) ฯ ) โ โ ) |
5 |
1 3 4
|
mp2an |
โข ( 0 [,) ฯ ) โ โ |
6 |
5
|
sseli |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ๐ด โ โ ) |
7 |
6
|
recnd |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ๐ด โ โ ) |
8 |
7
|
halfcld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด / 2 ) โ โ ) |
9 |
6
|
rehalfcld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด / 2 ) โ โ ) |
10 |
9
|
rered |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( โ โ ( ๐ด / 2 ) ) = ( ๐ด / 2 ) ) |
11 |
|
elico2 |
โข ( ( 0 โ โ โง ฯ โ โ* ) โ ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด โ โ โง 0 โค ๐ด โง ๐ด < ฯ ) ) ) |
12 |
1 3 11
|
mp2an |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด โ โ โง 0 โค ๐ด โง ๐ด < ฯ ) ) |
13 |
|
pipos |
โข 0 < ฯ |
14 |
|
lt0neg2 |
โข ( ฯ โ โ โ ( 0 < ฯ โ - ฯ < 0 ) ) |
15 |
2 14
|
ax-mp |
โข ( 0 < ฯ โ - ฯ < 0 ) |
16 |
13 15
|
mpbi |
โข - ฯ < 0 |
17 |
2
|
renegcli |
โข - ฯ โ โ |
18 |
|
ltletr |
โข ( ( - ฯ โ โ โง 0 โ โ โง ๐ด โ โ ) โ ( ( - ฯ < 0 โง 0 โค ๐ด ) โ - ฯ < ๐ด ) ) |
19 |
17 1 18
|
mp3an12 |
โข ( ๐ด โ โ โ ( ( - ฯ < 0 โง 0 โค ๐ด ) โ - ฯ < ๐ด ) ) |
20 |
16 19
|
mpani |
โข ( ๐ด โ โ โ ( 0 โค ๐ด โ - ฯ < ๐ด ) ) |
21 |
|
2re |
โข 2 โ โ |
22 |
|
2pos |
โข 0 < 2 |
23 |
21 22
|
pm3.2i |
โข ( 2 โ โ โง 0 < 2 ) |
24 |
|
ltdiv1 |
โข ( ( - ฯ โ โ โง ๐ด โ โ โง ( 2 โ โ โง 0 < 2 ) ) โ ( - ฯ < ๐ด โ ( - ฯ / 2 ) < ( ๐ด / 2 ) ) ) |
25 |
17 23 24
|
mp3an13 |
โข ( ๐ด โ โ โ ( - ฯ < ๐ด โ ( - ฯ / 2 ) < ( ๐ด / 2 ) ) ) |
26 |
|
picn |
โข ฯ โ โ |
27 |
|
2cn |
โข 2 โ โ |
28 |
|
2ne0 |
โข 2 โ 0 |
29 |
|
divneg |
โข ( ( ฯ โ โ โง 2 โ โ โง 2 โ 0 ) โ - ( ฯ / 2 ) = ( - ฯ / 2 ) ) |
30 |
26 27 28 29
|
mp3an |
โข - ( ฯ / 2 ) = ( - ฯ / 2 ) |
31 |
30
|
breq1i |
โข ( - ( ฯ / 2 ) < ( ๐ด / 2 ) โ ( - ฯ / 2 ) < ( ๐ด / 2 ) ) |
32 |
25 31
|
bitr4di |
โข ( ๐ด โ โ โ ( - ฯ < ๐ด โ - ( ฯ / 2 ) < ( ๐ด / 2 ) ) ) |
33 |
20 32
|
sylibd |
โข ( ๐ด โ โ โ ( 0 โค ๐ด โ - ( ฯ / 2 ) < ( ๐ด / 2 ) ) ) |
34 |
|
ltdiv1 |
โข ( ( ๐ด โ โ โง ฯ โ โ โง ( 2 โ โ โง 0 < 2 ) ) โ ( ๐ด < ฯ โ ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) |
35 |
2 23 34
|
mp3an23 |
โข ( ๐ด โ โ โ ( ๐ด < ฯ โ ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) |
36 |
35
|
biimpd |
โข ( ๐ด โ โ โ ( ๐ด < ฯ โ ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) |
37 |
33 36
|
anim12d |
โข ( ๐ด โ โ โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ( - ( ฯ / 2 ) < ( ๐ด / 2 ) โง ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) ) |
38 |
|
rehalfcl |
โข ( ๐ด โ โ โ ( ๐ด / 2 ) โ โ ) |
39 |
38
|
rexrd |
โข ( ๐ด โ โ โ ( ๐ด / 2 ) โ โ* ) |
40 |
|
halfpire |
โข ( ฯ / 2 ) โ โ |
41 |
40
|
renegcli |
โข - ( ฯ / 2 ) โ โ |
42 |
41
|
rexri |
โข - ( ฯ / 2 ) โ โ* |
43 |
40
|
rexri |
โข ( ฯ / 2 ) โ โ* |
44 |
|
elioo5 |
โข ( ( - ( ฯ / 2 ) โ โ* โง ( ฯ / 2 ) โ โ* โง ( ๐ด / 2 ) โ โ* ) โ ( ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) โ ( - ( ฯ / 2 ) < ( ๐ด / 2 ) โง ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) ) |
45 |
42 43 44
|
mp3an12 |
โข ( ( ๐ด / 2 ) โ โ* โ ( ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) โ ( - ( ฯ / 2 ) < ( ๐ด / 2 ) โง ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) ) |
46 |
39 45
|
syl |
โข ( ๐ด โ โ โ ( ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) โ ( - ( ฯ / 2 ) < ( ๐ด / 2 ) โง ( ๐ด / 2 ) < ( ฯ / 2 ) ) ) ) |
47 |
37 46
|
sylibrd |
โข ( ๐ด โ โ โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) ) ) |
48 |
47
|
3impib |
โข ( ( ๐ด โ โ โง 0 โค ๐ด โง ๐ด < ฯ ) โ ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) ) |
49 |
12 48
|
sylbi |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด / 2 ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) ) |
50 |
10 49
|
eqeltrd |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( โ โ ( ๐ด / 2 ) ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) ) |
51 |
|
cosne0 |
โข ( ( ( ๐ด / 2 ) โ โ โง ( โ โ ( ๐ด / 2 ) ) โ ( - ( ฯ / 2 ) (,) ( ฯ / 2 ) ) ) โ ( cos โ ( ๐ด / 2 ) ) โ 0 ) |
52 |
8 50 51
|
syl2anc |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( cos โ ( ๐ด / 2 ) ) โ 0 ) |
53 |
|
tanval |
โข ( ( ( ๐ด / 2 ) โ โ โง ( cos โ ( ๐ด / 2 ) ) โ 0 ) โ ( tan โ ( ๐ด / 2 ) ) = ( ( sin โ ( ๐ด / 2 ) ) / ( cos โ ( ๐ด / 2 ) ) ) ) |
54 |
8 52 53
|
syl2anc |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( tan โ ( ๐ด / 2 ) ) = ( ( sin โ ( ๐ด / 2 ) ) / ( cos โ ( ๐ด / 2 ) ) ) ) |
55 |
|
0xr |
โข 0 โ โ* |
56 |
|
elico1 |
โข ( ( 0 โ โ* โง ฯ โ โ* ) โ ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด โ โ* โง 0 โค ๐ด โง ๐ด < ฯ ) ) ) |
57 |
55 3 56
|
mp2an |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด โ โ* โง 0 โค ๐ด โง ๐ด < ฯ ) ) |
58 |
21 2
|
remulcli |
โข ( 2 ยท ฯ ) โ โ |
59 |
58
|
rexri |
โข ( 2 ยท ฯ ) โ โ* |
60 |
|
1lt2 |
โข 1 < 2 |
61 |
|
ltmulgt12 |
โข ( ( ฯ โ โ โง 2 โ โ โง 0 < ฯ ) โ ( 1 < 2 โ ฯ < ( 2 ยท ฯ ) ) ) |
62 |
2 21 13 61
|
mp3an |
โข ( 1 < 2 โ ฯ < ( 2 ยท ฯ ) ) |
63 |
60 62
|
mpbi |
โข ฯ < ( 2 ยท ฯ ) |
64 |
|
xrlttr |
โข ( ( ๐ด โ โ* โง ฯ โ โ* โง ( 2 ยท ฯ ) โ โ* ) โ ( ( ๐ด < ฯ โง ฯ < ( 2 ยท ฯ ) ) โ ๐ด < ( 2 ยท ฯ ) ) ) |
65 |
3 64
|
mp3an2 |
โข ( ( ๐ด โ โ* โง ( 2 ยท ฯ ) โ โ* ) โ ( ( ๐ด < ฯ โง ฯ < ( 2 ยท ฯ ) ) โ ๐ด < ( 2 ยท ฯ ) ) ) |
66 |
63 65
|
mpan2i |
โข ( ( ๐ด โ โ* โง ( 2 ยท ฯ ) โ โ* ) โ ( ๐ด < ฯ โ ๐ด < ( 2 ยท ฯ ) ) ) |
67 |
|
xrltle |
โข ( ( ๐ด โ โ* โง ( 2 ยท ฯ ) โ โ* ) โ ( ๐ด < ( 2 ยท ฯ ) โ ๐ด โค ( 2 ยท ฯ ) ) ) |
68 |
66 67
|
syld |
โข ( ( ๐ด โ โ* โง ( 2 ยท ฯ ) โ โ* ) โ ( ๐ด < ฯ โ ๐ด โค ( 2 ยท ฯ ) ) ) |
69 |
59 68
|
mpan2 |
โข ( ๐ด โ โ* โ ( ๐ด < ฯ โ ๐ด โค ( 2 ยท ฯ ) ) ) |
70 |
69
|
anim2d |
โข ( ๐ด โ โ* โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ( 0 โค ๐ด โง ๐ด โค ( 2 ยท ฯ ) ) ) ) |
71 |
|
elicc4 |
โข ( ( 0 โ โ* โง ( 2 ยท ฯ ) โ โ* โง ๐ด โ โ* ) โ ( ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) โ ( 0 โค ๐ด โง ๐ด โค ( 2 ยท ฯ ) ) ) ) |
72 |
55 59 71
|
mp3an12 |
โข ( ๐ด โ โ* โ ( ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) โ ( 0 โค ๐ด โง ๐ด โค ( 2 ยท ฯ ) ) ) ) |
73 |
70 72
|
sylibrd |
โข ( ๐ด โ โ* โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) ) ) |
74 |
73
|
3impib |
โข ( ( ๐ด โ โ* โง 0 โค ๐ด โง ๐ด < ฯ ) โ ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) ) |
75 |
57 74
|
sylbi |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) ) |
76 |
|
sin2h |
โข ( ๐ด โ ( 0 [,] ( 2 ยท ฯ ) ) โ ( sin โ ( ๐ด / 2 ) ) = ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
77 |
75 76
|
syl |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( sin โ ( ๐ด / 2 ) ) = ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
78 |
1 2 13
|
ltleii |
โข 0 โค ฯ |
79 |
|
le0neg2 |
โข ( ฯ โ โ โ ( 0 โค ฯ โ - ฯ โค 0 ) ) |
80 |
2 79
|
ax-mp |
โข ( 0 โค ฯ โ - ฯ โค 0 ) |
81 |
78 80
|
mpbi |
โข - ฯ โค 0 |
82 |
17
|
rexri |
โข - ฯ โ โ* |
83 |
|
xrletr |
โข ( ( - ฯ โ โ* โง 0 โ โ* โง ๐ด โ โ* ) โ ( ( - ฯ โค 0 โง 0 โค ๐ด ) โ - ฯ โค ๐ด ) ) |
84 |
82 55 83
|
mp3an12 |
โข ( ๐ด โ โ* โ ( ( - ฯ โค 0 โง 0 โค ๐ด ) โ - ฯ โค ๐ด ) ) |
85 |
81 84
|
mpani |
โข ( ๐ด โ โ* โ ( 0 โค ๐ด โ - ฯ โค ๐ด ) ) |
86 |
|
xrltle |
โข ( ( ๐ด โ โ* โง ฯ โ โ* ) โ ( ๐ด < ฯ โ ๐ด โค ฯ ) ) |
87 |
3 86
|
mpan2 |
โข ( ๐ด โ โ* โ ( ๐ด < ฯ โ ๐ด โค ฯ ) ) |
88 |
85 87
|
anim12d |
โข ( ๐ด โ โ* โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ( - ฯ โค ๐ด โง ๐ด โค ฯ ) ) ) |
89 |
|
elicc4 |
โข ( ( - ฯ โ โ* โง ฯ โ โ* โง ๐ด โ โ* ) โ ( ๐ด โ ( - ฯ [,] ฯ ) โ ( - ฯ โค ๐ด โง ๐ด โค ฯ ) ) ) |
90 |
82 3 89
|
mp3an12 |
โข ( ๐ด โ โ* โ ( ๐ด โ ( - ฯ [,] ฯ ) โ ( - ฯ โค ๐ด โง ๐ด โค ฯ ) ) ) |
91 |
88 90
|
sylibrd |
โข ( ๐ด โ โ* โ ( ( 0 โค ๐ด โง ๐ด < ฯ ) โ ๐ด โ ( - ฯ [,] ฯ ) ) ) |
92 |
91
|
3impib |
โข ( ( ๐ด โ โ* โง 0 โค ๐ด โง ๐ด < ฯ ) โ ๐ด โ ( - ฯ [,] ฯ ) ) |
93 |
57 92
|
sylbi |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ๐ด โ ( - ฯ [,] ฯ ) ) |
94 |
|
cos2h |
โข ( ๐ด โ ( - ฯ [,] ฯ ) โ ( cos โ ( ๐ด / 2 ) ) = ( โ โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) |
95 |
93 94
|
syl |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( cos โ ( ๐ด / 2 ) ) = ( โ โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) |
96 |
77 95
|
oveq12d |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ( sin โ ( ๐ด / 2 ) ) / ( cos โ ( ๐ด / 2 ) ) ) = ( ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) / ( โ โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) ) |
97 |
54 96
|
eqtrd |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( tan โ ( ๐ด / 2 ) ) = ( ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) / ( โ โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) ) |
98 |
|
1re |
โข 1 โ โ |
99 |
6
|
recoscld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( cos โ ๐ด ) โ โ ) |
100 |
|
resubcl |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 1 โ ( cos โ ๐ด ) ) โ โ ) |
101 |
98 99 100
|
sylancr |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 โ ( cos โ ๐ด ) ) โ โ ) |
102 |
101
|
rehalfcld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) โ โ ) |
103 |
|
cosbnd |
โข ( ๐ด โ โ โ ( - 1 โค ( cos โ ๐ด ) โง ( cos โ ๐ด ) โค 1 ) ) |
104 |
103
|
simprd |
โข ( ๐ด โ โ โ ( cos โ ๐ด ) โค 1 ) |
105 |
|
recoscl |
โข ( ๐ด โ โ โ ( cos โ ๐ด ) โ โ ) |
106 |
|
subge0 |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 0 โค ( 1 โ ( cos โ ๐ด ) ) โ ( cos โ ๐ด ) โค 1 ) ) |
107 |
|
halfnneg2 |
โข ( ( 1 โ ( cos โ ๐ด ) ) โ โ โ ( 0 โค ( 1 โ ( cos โ ๐ด ) ) โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
108 |
100 107
|
syl |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 0 โค ( 1 โ ( cos โ ๐ด ) ) โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
109 |
106 108
|
bitr3d |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( ( cos โ ๐ด ) โค 1 โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
110 |
98 105 109
|
sylancr |
โข ( ๐ด โ โ โ ( ( cos โ ๐ด ) โค 1 โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) ) |
111 |
104 110
|
mpbid |
โข ( ๐ด โ โ โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) |
112 |
6 111
|
syl |
โข ( ๐ด โ ( 0 [,) ฯ ) โ 0 โค ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) |
113 |
|
readdcl |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 1 + ( cos โ ๐ด ) ) โ โ ) |
114 |
98 99 113
|
sylancr |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 + ( cos โ ๐ด ) ) โ โ ) |
115 |
103
|
simpld |
โข ( ๐ด โ โ โ - 1 โค ( cos โ ๐ด ) ) |
116 |
98
|
renegcli |
โข - 1 โ โ |
117 |
|
subge0 |
โข ( ( ( cos โ ๐ด ) โ โ โง - 1 โ โ ) โ ( 0 โค ( ( cos โ ๐ด ) โ - 1 ) โ - 1 โค ( cos โ ๐ด ) ) ) |
118 |
105 116 117
|
sylancl |
โข ( ๐ด โ โ โ ( 0 โค ( ( cos โ ๐ด ) โ - 1 ) โ - 1 โค ( cos โ ๐ด ) ) ) |
119 |
|
recn |
โข ( ๐ด โ โ โ ๐ด โ โ ) |
120 |
119
|
coscld |
โข ( ๐ด โ โ โ ( cos โ ๐ด ) โ โ ) |
121 |
|
ax-1cn |
โข 1 โ โ |
122 |
|
subneg |
โข ( ( ( cos โ ๐ด ) โ โ โง 1 โ โ ) โ ( ( cos โ ๐ด ) โ - 1 ) = ( ( cos โ ๐ด ) + 1 ) ) |
123 |
|
addcom |
โข ( ( ( cos โ ๐ด ) โ โ โง 1 โ โ ) โ ( ( cos โ ๐ด ) + 1 ) = ( 1 + ( cos โ ๐ด ) ) ) |
124 |
122 123
|
eqtrd |
โข ( ( ( cos โ ๐ด ) โ โ โง 1 โ โ ) โ ( ( cos โ ๐ด ) โ - 1 ) = ( 1 + ( cos โ ๐ด ) ) ) |
125 |
120 121 124
|
sylancl |
โข ( ๐ด โ โ โ ( ( cos โ ๐ด ) โ - 1 ) = ( 1 + ( cos โ ๐ด ) ) ) |
126 |
125
|
breq2d |
โข ( ๐ด โ โ โ ( 0 โค ( ( cos โ ๐ด ) โ - 1 ) โ 0 โค ( 1 + ( cos โ ๐ด ) ) ) ) |
127 |
118 126
|
bitr3d |
โข ( ๐ด โ โ โ ( - 1 โค ( cos โ ๐ด ) โ 0 โค ( 1 + ( cos โ ๐ด ) ) ) ) |
128 |
115 127
|
mpbid |
โข ( ๐ด โ โ โ 0 โค ( 1 + ( cos โ ๐ด ) ) ) |
129 |
6 128
|
syl |
โข ( ๐ด โ ( 0 [,) ฯ ) โ 0 โค ( 1 + ( cos โ ๐ด ) ) ) |
130 |
|
snunioo |
โข ( ( 0 โ โ* โง ฯ โ โ* โง 0 < ฯ ) โ ( { 0 } โช ( 0 (,) ฯ ) ) = ( 0 [,) ฯ ) ) |
131 |
55 3 13 130
|
mp3an |
โข ( { 0 } โช ( 0 (,) ฯ ) ) = ( 0 [,) ฯ ) |
132 |
131
|
eleq2i |
โข ( ๐ด โ ( { 0 } โช ( 0 (,) ฯ ) ) โ ๐ด โ ( 0 [,) ฯ ) ) |
133 |
|
elun |
โข ( ๐ด โ ( { 0 } โช ( 0 (,) ฯ ) ) โ ( ๐ด โ { 0 } โจ ๐ด โ ( 0 (,) ฯ ) ) ) |
134 |
132 133
|
bitr3i |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ๐ด โ { 0 } โจ ๐ด โ ( 0 (,) ฯ ) ) ) |
135 |
|
elsni |
โข ( ๐ด โ { 0 } โ ๐ด = 0 ) |
136 |
|
fveq2 |
โข ( ๐ด = 0 โ ( cos โ ๐ด ) = ( cos โ 0 ) ) |
137 |
|
cos0 |
โข ( cos โ 0 ) = 1 |
138 |
136 137
|
eqtrdi |
โข ( ๐ด = 0 โ ( cos โ ๐ด ) = 1 ) |
139 |
138
|
oveq2d |
โข ( ๐ด = 0 โ ( 1 + ( cos โ ๐ด ) ) = ( 1 + 1 ) ) |
140 |
|
df-2 |
โข 2 = ( 1 + 1 ) |
141 |
139 140
|
eqtr4di |
โข ( ๐ด = 0 โ ( 1 + ( cos โ ๐ด ) ) = 2 ) |
142 |
28
|
a1i |
โข ( ๐ด = 0 โ 2 โ 0 ) |
143 |
141 142
|
eqnetrd |
โข ( ๐ด = 0 โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) |
144 |
135 143
|
syl |
โข ( ๐ด โ { 0 } โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) |
145 |
|
sinq12gt0 |
โข ( ๐ด โ ( 0 (,) ฯ ) โ 0 < ( sin โ ๐ด ) ) |
146 |
|
ltne |
โข ( ( 0 โ โ โง 0 < ( sin โ ๐ด ) ) โ ( sin โ ๐ด ) โ 0 ) |
147 |
1 146
|
mpan |
โข ( 0 < ( sin โ ๐ด ) โ ( sin โ ๐ด ) โ 0 ) |
148 |
|
elioore |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ๐ด โ โ ) |
149 |
148
|
recnd |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ๐ด โ โ ) |
150 |
|
oveq1 |
โข ( - 1 = ( cos โ ๐ด ) โ ( - 1 โ 2 ) = ( ( cos โ ๐ด ) โ 2 ) ) |
151 |
150
|
a1i |
โข ( ๐ด โ โ โ ( - 1 = ( cos โ ๐ด ) โ ( - 1 โ 2 ) = ( ( cos โ ๐ด ) โ 2 ) ) ) |
152 |
|
df-neg |
โข - 1 = ( 0 โ 1 ) |
153 |
152
|
eqeq1i |
โข ( - 1 = ( cos โ ๐ด ) โ ( 0 โ 1 ) = ( cos โ ๐ด ) ) |
154 |
|
coscl |
โข ( ๐ด โ โ โ ( cos โ ๐ด ) โ โ ) |
155 |
|
0cn |
โข 0 โ โ |
156 |
|
subadd |
โข ( ( 0 โ โ โง 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( ( 0 โ 1 ) = ( cos โ ๐ด ) โ ( 1 + ( cos โ ๐ด ) ) = 0 ) ) |
157 |
155 121 156
|
mp3an12 |
โข ( ( cos โ ๐ด ) โ โ โ ( ( 0 โ 1 ) = ( cos โ ๐ด ) โ ( 1 + ( cos โ ๐ด ) ) = 0 ) ) |
158 |
154 157
|
syl |
โข ( ๐ด โ โ โ ( ( 0 โ 1 ) = ( cos โ ๐ด ) โ ( 1 + ( cos โ ๐ด ) ) = 0 ) ) |
159 |
153 158
|
bitrid |
โข ( ๐ด โ โ โ ( - 1 = ( cos โ ๐ด ) โ ( 1 + ( cos โ ๐ด ) ) = 0 ) ) |
160 |
|
sincl |
โข ( ๐ด โ โ โ ( sin โ ๐ด ) โ โ ) |
161 |
160
|
sqcld |
โข ( ๐ด โ โ โ ( ( sin โ ๐ด ) โ 2 ) โ โ ) |
162 |
|
0cnd |
โข ( ๐ด โ โ โ 0 โ โ ) |
163 |
154
|
sqcld |
โข ( ๐ด โ โ โ ( ( cos โ ๐ด ) โ 2 ) โ โ ) |
164 |
161 162 163
|
addcan2d |
โข ( ๐ด โ โ โ ( ( ( ( sin โ ๐ด ) โ 2 ) + ( ( cos โ ๐ด ) โ 2 ) ) = ( 0 + ( ( cos โ ๐ด ) โ 2 ) ) โ ( ( sin โ ๐ด ) โ 2 ) = 0 ) ) |
165 |
|
sincossq |
โข ( ๐ด โ โ โ ( ( ( sin โ ๐ด ) โ 2 ) + ( ( cos โ ๐ด ) โ 2 ) ) = 1 ) |
166 |
|
neg1sqe1 |
โข ( - 1 โ 2 ) = 1 |
167 |
165 166
|
eqtr4di |
โข ( ๐ด โ โ โ ( ( ( sin โ ๐ด ) โ 2 ) + ( ( cos โ ๐ด ) โ 2 ) ) = ( - 1 โ 2 ) ) |
168 |
163
|
addlidd |
โข ( ๐ด โ โ โ ( 0 + ( ( cos โ ๐ด ) โ 2 ) ) = ( ( cos โ ๐ด ) โ 2 ) ) |
169 |
167 168
|
eqeq12d |
โข ( ๐ด โ โ โ ( ( ( ( sin โ ๐ด ) โ 2 ) + ( ( cos โ ๐ด ) โ 2 ) ) = ( 0 + ( ( cos โ ๐ด ) โ 2 ) ) โ ( - 1 โ 2 ) = ( ( cos โ ๐ด ) โ 2 ) ) ) |
170 |
|
sqeq0 |
โข ( ( sin โ ๐ด ) โ โ โ ( ( ( sin โ ๐ด ) โ 2 ) = 0 โ ( sin โ ๐ด ) = 0 ) ) |
171 |
160 170
|
syl |
โข ( ๐ด โ โ โ ( ( ( sin โ ๐ด ) โ 2 ) = 0 โ ( sin โ ๐ด ) = 0 ) ) |
172 |
164 169 171
|
3bitr3d |
โข ( ๐ด โ โ โ ( ( - 1 โ 2 ) = ( ( cos โ ๐ด ) โ 2 ) โ ( sin โ ๐ด ) = 0 ) ) |
173 |
151 159 172
|
3imtr3d |
โข ( ๐ด โ โ โ ( ( 1 + ( cos โ ๐ด ) ) = 0 โ ( sin โ ๐ด ) = 0 ) ) |
174 |
149 173
|
syl |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ( ( 1 + ( cos โ ๐ด ) ) = 0 โ ( sin โ ๐ด ) = 0 ) ) |
175 |
174
|
necon3d |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ( ( sin โ ๐ด ) โ 0 โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) ) |
176 |
147 175
|
syl5 |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ( 0 < ( sin โ ๐ด ) โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) ) |
177 |
145 176
|
mpd |
โข ( ๐ด โ ( 0 (,) ฯ ) โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) |
178 |
144 177
|
jaoi |
โข ( ( ๐ด โ { 0 } โจ ๐ด โ ( 0 (,) ฯ ) ) โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) |
179 |
134 178
|
sylbi |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 + ( cos โ ๐ด ) ) โ 0 ) |
180 |
114 129 179
|
ne0gt0d |
โข ( ๐ด โ ( 0 [,) ฯ ) โ 0 < ( 1 + ( cos โ ๐ด ) ) ) |
181 |
114 180
|
elrpd |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 + ( cos โ ๐ด ) ) โ โ+ ) |
182 |
181
|
rphalfcld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) โ โ+ ) |
183 |
102 112 182
|
sqrtdivd |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( โ โ ( ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) / ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) = ( ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) ) / ( โ โ ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) ) |
184 |
7
|
coscld |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( cos โ ๐ด ) โ โ ) |
185 |
|
subcl |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 1 โ ( cos โ ๐ด ) ) โ โ ) |
186 |
121 184 185
|
sylancr |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 โ ( cos โ ๐ด ) ) โ โ ) |
187 |
|
addcl |
โข ( ( 1 โ โ โง ( cos โ ๐ด ) โ โ ) โ ( 1 + ( cos โ ๐ด ) ) โ โ ) |
188 |
121 184 187
|
sylancr |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( 1 + ( cos โ ๐ด ) ) โ โ ) |
189 |
|
2cnne0 |
โข ( 2 โ โ โง 2 โ 0 ) |
190 |
|
divcan7 |
โข ( ( ( 1 โ ( cos โ ๐ด ) ) โ โ โง ( ( 1 + ( cos โ ๐ด ) ) โ โ โง ( 1 + ( cos โ ๐ด ) ) โ 0 ) โง ( 2 โ โ โง 2 โ 0 ) ) โ ( ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) / ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) = ( ( 1 โ ( cos โ ๐ด ) ) / ( 1 + ( cos โ ๐ด ) ) ) ) |
191 |
189 190
|
mp3an3 |
โข ( ( ( 1 โ ( cos โ ๐ด ) ) โ โ โง ( ( 1 + ( cos โ ๐ด ) ) โ โ โง ( 1 + ( cos โ ๐ด ) ) โ 0 ) ) โ ( ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) / ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) = ( ( 1 โ ( cos โ ๐ด ) ) / ( 1 + ( cos โ ๐ด ) ) ) ) |
192 |
186 188 179 191
|
syl12anc |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) / ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) = ( ( 1 โ ( cos โ ๐ด ) ) / ( 1 + ( cos โ ๐ด ) ) ) ) |
193 |
192
|
fveq2d |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( โ โ ( ( ( 1 โ ( cos โ ๐ด ) ) / 2 ) / ( ( 1 + ( cos โ ๐ด ) ) / 2 ) ) ) = ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / ( 1 + ( cos โ ๐ด ) ) ) ) ) |
194 |
97 183 193
|
3eqtr2d |
โข ( ๐ด โ ( 0 [,) ฯ ) โ ( tan โ ( ๐ด / 2 ) ) = ( โ โ ( ( 1 โ ( cos โ ๐ด ) ) / ( 1 + ( cos โ ๐ด ) ) ) ) ) |