| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 2 | 1 | linds1 | ⊢ ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  →  𝐹  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 4 | 3 | snssd | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  →  { 𝑋 }  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 5 |  | unss | ⊢ ( ( 𝐹  ⊆  ( Base ‘ 𝑊 )  ∧  { 𝑋 }  ⊆  ( Base ‘ 𝑊 ) )  ↔  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 6 | 5 | biimpi | ⊢ ( ( 𝐹  ⊆  ( Base ‘ 𝑊 )  ∧  { 𝑋 }  ⊆  ( Base ‘ 𝑊 ) )  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 7 | 2 4 6 | syl2an | ⊢ ( ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 9 |  | eldifn | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  →  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 12 |  | simpll1 | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  𝑊  ∈  LVec ) | 
						
							| 13 | 2 | ssdifssd | ⊢ ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  →  ( 𝐹  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝐹  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  ( 𝐹  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 16 | 3 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) ) | 
						
							| 19 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 21 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 22 | 21 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 23 | 19 22 | syl | ⊢ ( 𝑊  ∈  LVec  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 26 | 24 25 | ringelnzr | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  Ring  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 27 | 23 26 | sylan | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 28 | 27 | ad2ant2rl | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( Scalar ‘ 𝑊 )  ∈  NzRing ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  𝐹  ∈  ( LIndS ‘ 𝑊 ) ) | 
						
							| 30 |  | simprl | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  𝑥  ∈  𝐹 ) | 
						
							| 31 |  | eqid | ⊢ ( LSpan ‘ 𝑊 )  =  ( LSpan ‘ 𝑊 ) | 
						
							| 32 | 31 21 | lindsind2 | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  ( Scalar ‘ 𝑊 )  ∈  NzRing )  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑥  ∈  𝐹 )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) | 
						
							| 33 | 20 28 29 30 32 | syl211anc | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) | 
						
							| 34 | 33 | 3adantl3 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  ¬  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) | 
						
							| 36 | 18 35 | eldifd | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  𝑥  ∈  ( ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 38 | 1 37 31 | lspsolv | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( ( 𝐹  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 )  ∧  𝑥  ∈  ( ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑥 } ) ) ) ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) | 
						
							| 39 | 12 15 17 36 38 | syl13anc | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  ∧  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) | 
						
							| 40 | 39 | ex | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) ) ) ) | 
						
							| 41 |  | eldif | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  ↔  ( 𝑋  ∈  ( Base ‘ 𝑊 )  ∧  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 42 |  | snssi | ⊢ ( 𝑋  ∈  𝐹  →  { 𝑋 }  ⊆  𝐹 ) | 
						
							| 43 | 1 31 | lspss | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐹  ⊆  ( Base ‘ 𝑊 )  ∧  { 𝑋 }  ⊆  𝐹 )  →  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 44 | 19 2 42 43 | syl3an | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  𝐹 )  →  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 45 | 44 | ad4ant124 | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑋  ∈  𝐹 )  →  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 46 | 1 31 | lspsnid | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 47 | 19 46 | sylan | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 48 | 47 | ad4ant13 | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑋  ∈  𝐹 )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 49 | 45 48 | sseldd | ⊢ ( ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑋  ∈  𝐹 )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 50 | 49 | ex | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑋  ∈  𝐹  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 51 | 50 | con3d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  →  ¬  𝑋  ∈  𝐹 ) ) | 
						
							| 52 | 51 | expimpd | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  →  ( ( 𝑋  ∈  ( Base ‘ 𝑊 )  ∧  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  →  ¬  𝑋  ∈  𝐹 ) ) | 
						
							| 53 | 52 | 3impia | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  ( 𝑋  ∈  ( Base ‘ 𝑊 )  ∧  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ¬  𝑋  ∈  𝐹 ) | 
						
							| 54 | 41 53 | syl3an3b | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ¬  𝑋  ∈  𝐹 ) | 
						
							| 55 |  | eleq1 | ⊢ ( 𝑋  =  𝑥  →  ( 𝑋  ∈  𝐹  ↔  𝑥  ∈  𝐹 ) ) | 
						
							| 56 | 55 | notbid | ⊢ ( 𝑋  =  𝑥  →  ( ¬  𝑋  ∈  𝐹  ↔  ¬  𝑥  ∈  𝐹 ) ) | 
						
							| 57 | 54 56 | syl5ibcom | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝑋  =  𝑥  →  ¬  𝑥  ∈  𝐹 ) ) | 
						
							| 58 | 57 | necon2ad | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝑥  ∈  𝐹  →  𝑋  ≠  𝑥 ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  𝑋  ≠  𝑥 ) | 
						
							| 60 |  | disjsn2 | ⊢ ( 𝑋  ≠  𝑥  →  ( { 𝑋 }  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  ( { 𝑋 }  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 62 |  | disj3 | ⊢ ( ( { 𝑋 }  ∩  { 𝑥 } )  =  ∅  ↔  { 𝑋 }  =  ( { 𝑋 }  ∖  { 𝑥 } ) ) | 
						
							| 63 | 61 62 | sylib | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  { 𝑋 }  =  ( { 𝑋 }  ∖  { 𝑥 } ) ) | 
						
							| 64 | 63 | uneq2d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } )  =  ( ( 𝐹  ∖  { 𝑥 } )  ∪  ( { 𝑋 }  ∖  { 𝑥 } ) ) ) | 
						
							| 65 |  | difundir | ⊢ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } )  =  ( ( 𝐹  ∖  { 𝑥 } )  ∪  ( { 𝑋 }  ∖  { 𝑥 } ) ) | 
						
							| 66 | 64 65 | eqtr4di | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } )  =  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) | 
						
							| 67 | 66 | fveq2d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  =  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) | 
						
							| 68 | 67 | eleq2d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑥  ∈  𝐹 )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  ↔  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 69 | 68 | adantrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  ↔  𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 70 |  | simpl | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  𝑊  ∈  LVec ) | 
						
							| 71 |  | eldifsn | ⊢ ( 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  ↔  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 72 | 71 | biimpi | ⊢ ( 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  →  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 74 | 2 | sselda | ⊢ ( ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 75 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 76 | 1 21 75 25 24 31 | lspsnvs | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) | 
						
							| 77 | 70 73 74 76 | syl2an3an | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  ∧  ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑥  ∈  𝐹 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) | 
						
							| 78 | 77 | an42s | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } ) ) | 
						
							| 79 | 78 | sseq1d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 80 | 79 | 3adantl3 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 81 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } )  →  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 82 | 19 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑊  ∈  LMod ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 84 |  | snssi | ⊢ ( 𝑋  ∈  ( Base ‘ 𝑊 )  →  { 𝑋 }  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 85 | 2 84 6 | syl2an | ⊢ ( ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 86 | 85 | ssdifssd | ⊢ ( ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 87 | 1 37 31 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } )  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 88 | 19 86 87 | syl2an | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 89 | 88 | 3impb | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 91 | 19 | anim1i | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑊  ∈  LMod  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 92 | 1 21 75 25 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 93 | 92 | 3expa | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 94 | 91 74 93 | syl2an | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  ( 𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑥  ∈  𝐹 ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 95 | 94 | an42s | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 96 | 95 | 3adantl3 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 97 | 1 37 31 83 90 96 | ellspsn5b | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 98 | 81 97 | sylanr2 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 99 | 82 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑥  ∈  𝐹 )  →  𝑊  ∈  LMod ) | 
						
							| 100 | 89 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑥  ∈  𝐹 )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 101 | 74 | 3ad2antl2 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑥  ∈  𝐹 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 102 | 1 37 31 99 100 101 | ellspsn5b | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑥  ∈  𝐹 )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 103 | 102 | adantrr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑥 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 104 | 80 98 103 | 3bitr4rd | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 105 | 3 104 | syl3anl3 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 106 | 69 105 | bitrd | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑥  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑋 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 107 |  | difsnid | ⊢ ( 𝑥  ∈  𝐹  →  ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } )  =  𝐹 ) | 
						
							| 108 | 107 | fveq2d | ⊢ ( 𝑥  ∈  𝐹  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 109 | 108 | eleq2d | ⊢ ( 𝑥  ∈  𝐹  →  ( 𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  ↔  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 110 | 109 | ad2antrl | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( 𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∖  { 𝑥 } )  ∪  { 𝑥 } ) )  ↔  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 111 | 40 106 110 | 3imtr3d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  →  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 112 | 11 111 | mtod | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) )  →  ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) | 
						
							| 113 | 112 | ralrimivva | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ∀ 𝑥  ∈  𝐹 ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) | 
						
							| 114 | 10 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ¬  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 115 |  | difsn | ⊢ ( ¬  𝑋  ∈  𝐹  →  ( 𝐹  ∖  { 𝑋 } )  =  𝐹 ) | 
						
							| 116 | 54 115 | syl | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝐹  ∖  { 𝑋 } )  =  𝐹 ) | 
						
							| 117 | 116 | fveq2d | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) )  =  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) | 
						
							| 118 | 117 | eleq2d | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 120 | 1 21 75 25 24 31 | lspsnvs | ⊢ ( ( 𝑊  ∈  LVec  ∧  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 121 | 120 | 3expa | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 122 | 121 | an32s | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑘  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 123 | 71 122 | sylan2b | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  =  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 124 | 123 | sseq1d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 125 | 124 | 3adantl2 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 126 | 82 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 127 | 1 37 31 | lspcl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐹  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 128 | 19 2 127 | syl2an | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 129 | 128 | 3adant3 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 130 | 129 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 131 | 1 21 75 25 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 132 | 131 | 3expa | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 133 | 132 | an32s | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 134 | 19 133 | sylanl1 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 135 | 134 | 3adantl2 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 136 | 1 37 31 126 130 135 | ellspsn5b | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 137 | 81 136 | sylan2 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 138 |  | simp3 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  𝑋  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 139 | 1 37 31 82 129 138 | ellspsn5b | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( 𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  ( ( LSpan ‘ 𝑊 ) ‘ { 𝑋 } )  ⊆  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 141 | 125 137 140 | 3bitr4d | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 142 | 3 141 | syl3anl3 | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 )  ↔  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 143 | 119 142 | bitrd | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) )  ↔  𝑋  ∈  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) ) | 
						
							| 144 | 114 143 | mtbird | ⊢ ( ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  ∧  𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) )  →  ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) | 
						
							| 145 | 144 | ralrimiva | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) | 
						
							| 146 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 ) ) | 
						
							| 147 |  | sneq | ⊢ ( 𝑥  =  𝑋  →  { 𝑥 }  =  { 𝑋 } ) | 
						
							| 148 | 147 | difeq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } )  =  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑋 } ) ) | 
						
							| 149 |  | difun2 | ⊢ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑋 } )  =  ( 𝐹  ∖  { 𝑋 } ) | 
						
							| 150 | 148 149 | eqtrdi | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } )  =  ( 𝐹  ∖  { 𝑋 } ) ) | 
						
							| 151 | 150 | fveq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  =  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) | 
						
							| 152 | 146 151 | eleq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) ) | 
						
							| 153 | 152 | notbid | ⊢ ( 𝑥  =  𝑋  →  ( ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) ) | 
						
							| 154 | 153 | ralbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) ) | 
						
							| 155 | 154 | ralsng | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) )  →  ( ∀ 𝑥  ∈  { 𝑋 } ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) ) | 
						
							| 156 | 155 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( ∀ 𝑥  ∈  { 𝑋 } ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑋 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( 𝐹  ∖  { 𝑋 } ) ) ) ) | 
						
							| 157 | 145 156 | mpbird | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ∀ 𝑥  ∈  { 𝑋 } ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) | 
						
							| 158 |  | ralunb | ⊢ ( ∀ 𝑥  ∈  ( 𝐹  ∪  { 𝑋 } ) ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ↔  ( ∀ 𝑥  ∈  𝐹 ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) )  ∧  ∀ 𝑥  ∈  { 𝑋 } ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) | 
						
							| 159 | 113 157 158 | sylanbrc | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ∀ 𝑥  ∈  ( 𝐹  ∪  { 𝑋 } ) ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) | 
						
							| 160 | 1 75 31 21 25 24 | islinds2 | ⊢ ( 𝑊  ∈  LVec  →  ( ( 𝐹  ∪  { 𝑋 } )  ∈  ( LIndS ‘ 𝑊 )  ↔  ( ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( 𝐹  ∪  { 𝑋 } ) ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 161 | 160 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( ( 𝐹  ∪  { 𝑋 } )  ∈  ( LIndS ‘ 𝑊 )  ↔  ( ( 𝐹  ∪  { 𝑋 } )  ⊆  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( 𝐹  ∪  { 𝑋 } ) ∀ 𝑘  ∈  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬  ( 𝑘 (  ·𝑠  ‘ 𝑊 ) 𝑥 )  ∈  ( ( LSpan ‘ 𝑊 ) ‘ ( ( 𝐹  ∪  { 𝑋 } )  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 162 | 8 159 161 | mpbir2and | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐹  ∈  ( LIndS ‘ 𝑊 )  ∧  𝑋  ∈  ( ( Base ‘ 𝑊 )  ∖  ( ( LSpan ‘ 𝑊 ) ‘ 𝐹 ) ) )  →  ( 𝐹  ∪  { 𝑋 } )  ∈  ( LIndS ‘ 𝑊 ) ) |