| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsolv.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsolv.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lspsolv.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 6 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ { 𝑧 ∈ 𝑉 ∣ ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) } = { 𝑧 ∈ 𝑉 ∣ ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) } |
| 9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑊 ∈ LMod ) |
| 11 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝐴 ⊆ 𝑉 ) |
| 12 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑌 ∈ 𝑉 ) |
| 13 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) |
| 14 |
13
|
eldifad |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ) |
| 15 |
1 2 3 4 5 6 7 8 10 11 12 14
|
lspsolvlem |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → ∃ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) |
| 16 |
4
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 18 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 |
10
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑊 ∈ LMod ) |
| 20 |
12
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 23 |
1 4 7 21 22
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
| 24 |
19 20 23
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( 0g ‘ 𝑊 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 26 |
11
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝐴 ⊆ 𝑉 ) |
| 27 |
20
|
snssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → { 𝑌 } ⊆ 𝑉 ) |
| 28 |
26 27
|
unssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑌 } ) ⊆ 𝑉 ) |
| 29 |
1 3
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑌 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ⊆ 𝑉 ) |
| 30 |
19 28 29
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ⊆ 𝑉 ) |
| 31 |
30
|
ssdifssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ⊆ 𝑉 ) |
| 32 |
13
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) |
| 33 |
31 32
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 34 |
1 6 22
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑋 ) |
| 35 |
19 33 34
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑋 ) |
| 36 |
25 35
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑋 ) |
| 37 |
36 32
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) |
| 38 |
37
|
eldifbd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ¬ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) |
| 39 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ↔ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) |
| 43 |
39 42
|
syl5ibcom |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) |
| 44 |
43
|
necon3bd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ¬ ( 𝑋 ( +g ‘ 𝑊 ) ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) → 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 |
38 44
|
mpd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 46 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 47 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 48 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) |
| 49 |
5 21 46 47 48
|
drnginvrl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 50 |
17 18 45 49
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 52 |
5 21 48
|
drnginvrcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 53 |
17 18 45 52
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 54 |
1 4 7 5 46
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 55 |
19 53 18 20 54
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 56 |
1 4 7 47
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 57 |
19 20 56
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
| 58 |
51 55 57
|
3eqtr3d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑌 ) |
| 59 |
33
|
snssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → { 𝑋 } ⊆ 𝑉 ) |
| 60 |
26 59
|
unssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) |
| 61 |
1 2 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 62 |
19 60 61
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) |
| 63 |
1 4 7 5
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 64 |
19 18 20 63
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 65 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
| 66 |
1 6 65
|
lmodvpncan |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 67 |
19 64 33 66
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 68 |
1 6
|
lmodcom |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 69 |
19 64 33 68
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 70 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) |
| 71 |
70
|
a1i |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) ) |
| 72 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑋 } ) ) → ( 𝑁 ‘ 𝐴 ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 73 |
19 60 71 72
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑁 ‘ 𝐴 ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 74 |
73 39
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 75 |
69 74
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 76 |
1 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ { 𝑋 } ) ⊆ 𝑉 ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 77 |
19 60 76
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝐴 ∪ { 𝑋 } ) ⊆ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 78 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) |
| 79 |
|
elun2 |
⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( 𝐴 ∪ { 𝑋 } ) ) |
| 80 |
33 78 79
|
3syl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( 𝐴 ∪ { 𝑋 } ) ) |
| 81 |
77 80
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 82 |
65 2
|
lssvsubcl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) ∧ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 83 |
19 62 75 81 82
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ( +g ‘ 𝑊 ) 𝑋 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 84 |
67 83
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 85 |
4 7 5 2
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ∈ 𝑆 ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 86 |
19 62 53 84 85
|
syl22anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑟 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 87 |
58 86
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) ∧ ( 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ ( 𝑁 ‘ 𝐴 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |
| 88 |
15 87
|
rexlimddv |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ( ( 𝑁 ‘ ( 𝐴 ∪ { 𝑌 } ) ) ∖ ( 𝑁 ‘ 𝐴 ) ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝐴 ∪ { 𝑋 } ) ) ) |