| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 2 | 1 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 3 |  | iccssre | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( - π [,] π )  ⊆  ℝ ) | 
						
							| 4 | 2 1 3 | mp2an | ⊢ ( - π [,] π )  ⊆  ℝ | 
						
							| 5 | 4 | sseli | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ∈  ℝ ) | 
						
							| 6 | 5 | rehalfcld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 7 | 6 | recoscld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( cos ‘ ( 𝐴  /  2 ) )  ∈  ℝ ) | 
						
							| 8 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 9 | 5 | recoscld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 10 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( cos ‘ 𝐴 )  ∈  ℝ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | rehalfcld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℝ ) | 
						
							| 13 |  | cosbnd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ∧  ( cos ‘ 𝐴 )  ≤  1 ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝐴  ∈  ℝ  →  - 1  ≤  ( cos ‘ 𝐴 ) ) | 
						
							| 15 |  | recoscl | ⊢ ( 𝐴  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 16 |  | recn | ⊢ ( ( cos ‘ 𝐴 )  ∈  ℝ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 17 |  | recn | ⊢ ( 1  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 18 |  | subneg | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( ( cos ‘ 𝐴 )  +  1 ) ) | 
						
							| 19 |  | addcom | ⊢ ( ( 1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  =  ( ( cos ‘ 𝐴 )  +  1 ) ) | 
						
							| 20 | 19 | ancoms | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  =  ( ( cos ‘ 𝐴 )  +  1 ) ) | 
						
							| 21 | 18 20 | eqtr4d | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 22 | 16 17 21 | syl2an | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( cos ‘ 𝐴 )  −  - 1 )  =  ( 1  +  ( cos ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  0  ≤  ( 1  +  ( cos ‘ 𝐴 ) ) ) ) | 
						
							| 24 |  | renegcl | ⊢ ( 1  ∈  ℝ  →  - 1  ∈  ℝ ) | 
						
							| 25 |  | subge0 | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  - 1  ∈  ℝ )  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  - 1  ≤  ( cos ‘ 𝐴 ) ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  ≤  ( ( cos ‘ 𝐴 )  −  - 1 )  ↔  - 1  ≤  ( cos ‘ 𝐴 ) ) ) | 
						
							| 27 | 10 | ancoms | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 28 |  | halfnneg2 | ⊢ ( ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℝ  →  ( 0  ≤  ( 1  +  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  ≤  ( 1  +  ( cos ‘ 𝐴 ) )  ↔  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 30 | 23 26 29 | 3bitr3d | ⊢ ( ( ( cos ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ↔  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 31 | 15 8 30 | sylancl | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ≤  ( cos ‘ 𝐴 )  ↔  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 32 | 14 31 | mpbid | ⊢ ( 𝐴  ∈  ℝ  →  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 33 | 5 32 | syl | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  0  ≤  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 34 | 12 33 | resqrtcld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) )  ∈  ℝ ) | 
						
							| 35 | 2 1 | elicc2i | ⊢ ( 𝐴  ∈  ( - π [,] π )  ↔  ( 𝐴  ∈  ℝ  ∧  - π  ≤  𝐴  ∧  𝐴  ≤  π ) ) | 
						
							| 36 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 37 |  | 2pos | ⊢ 0  <  2 | 
						
							| 38 | 36 37 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 39 |  | lediv1 | ⊢ ( ( - π  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( - π  ≤  𝐴  ↔  ( - π  /  2 )  ≤  ( 𝐴  /  2 ) ) ) | 
						
							| 40 | 2 38 39 | mp3an13 | ⊢ ( 𝐴  ∈  ℝ  →  ( - π  ≤  𝐴  ↔  ( - π  /  2 )  ≤  ( 𝐴  /  2 ) ) ) | 
						
							| 41 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 42 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 43 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 44 |  | divneg | ⊢ ( ( π  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  - ( π  /  2 )  =  ( - π  /  2 ) ) | 
						
							| 45 | 41 42 43 44 | mp3an | ⊢ - ( π  /  2 )  =  ( - π  /  2 ) | 
						
							| 46 | 45 | breq1i | ⊢ ( - ( π  /  2 )  ≤  ( 𝐴  /  2 )  ↔  ( - π  /  2 )  ≤  ( 𝐴  /  2 ) ) | 
						
							| 47 | 40 46 | bitr4di | ⊢ ( 𝐴  ∈  ℝ  →  ( - π  ≤  𝐴  ↔  - ( π  /  2 )  ≤  ( 𝐴  /  2 ) ) ) | 
						
							| 48 |  | lediv1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  π  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐴  ≤  π  ↔  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) | 
						
							| 49 | 1 38 48 | mp3an23 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≤  π  ↔  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) | 
						
							| 50 | 47 49 | anbi12d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( - π  ≤  𝐴  ∧  𝐴  ≤  π )  ↔  ( - ( π  /  2 )  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) ) | 
						
							| 51 |  | rehalfcl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ ) | 
						
							| 52 | 51 | rexrd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  2 )  ∈  ℝ* ) | 
						
							| 53 |  | halfpire | ⊢ ( π  /  2 )  ∈  ℝ | 
						
							| 54 | 53 | renegcli | ⊢ - ( π  /  2 )  ∈  ℝ | 
						
							| 55 | 54 | rexri | ⊢ - ( π  /  2 )  ∈  ℝ* | 
						
							| 56 | 53 | rexri | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 57 |  | elicc4 | ⊢ ( ( - ( π  /  2 )  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ*  ∧  ( 𝐴  /  2 )  ∈  ℝ* )  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  ↔  ( - ( π  /  2 )  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) ) | 
						
							| 58 | 55 56 57 | mp3an12 | ⊢ ( ( 𝐴  /  2 )  ∈  ℝ*  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  ↔  ( - ( π  /  2 )  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) ) | 
						
							| 59 | 52 58 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  ↔  ( - ( π  /  2 )  ≤  ( 𝐴  /  2 )  ∧  ( 𝐴  /  2 )  ≤  ( π  /  2 ) ) ) ) | 
						
							| 60 | 50 59 | bitr4d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( - π  ≤  𝐴  ∧  𝐴  ≤  π )  ↔  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) ) ) | 
						
							| 61 | 60 | biimpd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( - π  ≤  𝐴  ∧  𝐴  ≤  π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) ) ) | 
						
							| 62 | 61 | 3impib | ⊢ ( ( 𝐴  ∈  ℝ  ∧  - π  ≤  𝐴  ∧  𝐴  ≤  π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) ) | 
						
							| 63 | 35 62 | sylbi | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) ) ) | 
						
							| 64 |  | cosq14ge0 | ⊢ ( ( 𝐴  /  2 )  ∈  ( - ( π  /  2 ) [,] ( π  /  2 ) )  →  0  ≤  ( cos ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  0  ≤  ( cos ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 66 | 12 33 | sqrtge0d | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  0  ≤  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) | 
						
							| 67 | 5 | recnd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ∈  ℂ ) | 
						
							| 68 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 69 |  | coscl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 70 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ∈  ℂ )  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 71 | 68 69 70 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  +  ( cos ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 72 | 71 | halfcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 )  ∈  ℂ ) | 
						
							| 73 | 72 | sqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 )  =  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 74 |  | divcan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 75 | 42 43 74 | mp3an23 | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( 𝐴  /  2 ) )  =  𝐴 ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( cos ‘ 𝐴 ) ) | 
						
							| 77 |  | halfcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 78 |  | cos2t | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) | 
						
							| 79 | 77 78 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 2  ·  ( 𝐴  /  2 ) ) )  =  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) | 
						
							| 80 | 76 79 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  =  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  +  ( cos ‘ 𝐴 ) )  =  ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 )  =  ( ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  /  2 ) ) | 
						
							| 83 | 77 | coscld | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 84 | 83 | sqcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 85 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ )  →  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 86 | 42 85 | mpan | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ ) | 
						
							| 87 |  | pncan3 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  ∈  ℂ )  →  ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  =  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 88 | 68 86 87 | sylancr | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  =  ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  /  2 )  =  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  /  2 ) ) | 
						
							| 90 |  | divcan3 | ⊢ ( ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  /  2 )  =  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 91 | 42 43 90 | mp3an23 | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  /  2 )  =  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 92 | 89 91 | eqtrd | ⊢ ( ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  ∈  ℂ  →  ( ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  /  2 )  =  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 93 | 84 92 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  +  ( ( 2  ·  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) )  −  1 ) )  /  2 )  =  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 ) ) | 
						
							| 94 | 73 82 93 | 3eqtrrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  ( ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) ) | 
						
							| 95 | 67 94 | syl | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( ( cos ‘ ( 𝐴  /  2 ) ) ↑ 2 )  =  ( ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ↑ 2 ) ) | 
						
							| 96 | 7 34 65 66 95 | sq11d | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( cos ‘ ( 𝐴  /  2 ) )  =  ( √ ‘ ( ( 1  +  ( cos ‘ 𝐴 ) )  /  2 ) ) ) |