Step |
Hyp |
Ref |
Expression |
1 |
|
pire |
⊢ π ∈ ℝ |
2 |
1
|
renegcli |
⊢ - π ∈ ℝ |
3 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
4 |
2 1 3
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
5 |
4
|
sseli |
⊢ ( 𝐴 ∈ ( - π [,] π ) → 𝐴 ∈ ℝ ) |
6 |
5
|
rehalfcld |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( 𝐴 / 2 ) ∈ ℝ ) |
7 |
6
|
recoscld |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
8 |
|
1re |
⊢ 1 ∈ ℝ |
9 |
5
|
recoscld |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( cos ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
11
|
rehalfcld |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ∈ ℝ ) |
13 |
|
cosbnd |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |
14 |
13
|
simpld |
⊢ ( 𝐴 ∈ ℝ → - 1 ≤ ( cos ‘ 𝐴 ) ) |
15 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
16 |
|
recn |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
17 |
|
recn |
⊢ ( 1 ∈ ℝ → 1 ∈ ℂ ) |
18 |
|
subneg |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) − - 1 ) = ( ( cos ‘ 𝐴 ) + 1 ) ) |
19 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ) → ( 1 + ( cos ‘ 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + 1 ) ) |
20 |
19
|
ancoms |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( 1 + ( cos ‘ 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + 1 ) ) |
21 |
18 20
|
eqtr4d |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) − - 1 ) = ( 1 + ( cos ‘ 𝐴 ) ) ) |
22 |
16 17 21
|
syl2an |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( cos ‘ 𝐴 ) − - 1 ) = ( 1 + ( cos ‘ 𝐴 ) ) ) |
23 |
22
|
breq2d |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( ( cos ‘ 𝐴 ) − - 1 ) ↔ 0 ≤ ( 1 + ( cos ‘ 𝐴 ) ) ) ) |
24 |
|
renegcl |
⊢ ( 1 ∈ ℝ → - 1 ∈ ℝ ) |
25 |
|
subge0 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ - 1 ∈ ℝ ) → ( 0 ≤ ( ( cos ‘ 𝐴 ) − - 1 ) ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
26 |
24 25
|
sylan2 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( ( cos ‘ 𝐴 ) − - 1 ) ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
27 |
10
|
ancoms |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℝ ) |
28 |
|
halfnneg2 |
⊢ ( ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℝ → ( 0 ≤ ( 1 + ( cos ‘ 𝐴 ) ) ↔ 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 ≤ ( 1 + ( cos ‘ 𝐴 ) ) ↔ 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
30 |
23 26 29
|
3bitr3d |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 ≤ ( cos ‘ 𝐴 ) ↔ 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
31 |
15 8 30
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ↔ 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
32 |
14 31
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) |
33 |
5 32
|
syl |
⊢ ( 𝐴 ∈ ( - π [,] π ) → 0 ≤ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) |
34 |
12 33
|
resqrtcld |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ∈ ℝ ) |
35 |
2 1
|
elicc2i |
⊢ ( 𝐴 ∈ ( - π [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ - π ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
36 |
|
2re |
⊢ 2 ∈ ℝ |
37 |
|
2pos |
⊢ 0 < 2 |
38 |
36 37
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
39 |
|
lediv1 |
⊢ ( ( - π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( - π ≤ 𝐴 ↔ ( - π / 2 ) ≤ ( 𝐴 / 2 ) ) ) |
40 |
2 38 39
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( - π ≤ 𝐴 ↔ ( - π / 2 ) ≤ ( 𝐴 / 2 ) ) ) |
41 |
|
picn |
⊢ π ∈ ℂ |
42 |
|
2cn |
⊢ 2 ∈ ℂ |
43 |
|
2ne0 |
⊢ 2 ≠ 0 |
44 |
|
divneg |
⊢ ( ( π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( π / 2 ) = ( - π / 2 ) ) |
45 |
41 42 43 44
|
mp3an |
⊢ - ( π / 2 ) = ( - π / 2 ) |
46 |
45
|
breq1i |
⊢ ( - ( π / 2 ) ≤ ( 𝐴 / 2 ) ↔ ( - π / 2 ) ≤ ( 𝐴 / 2 ) ) |
47 |
40 46
|
bitr4di |
⊢ ( 𝐴 ∈ ℝ → ( - π ≤ 𝐴 ↔ - ( π / 2 ) ≤ ( 𝐴 / 2 ) ) ) |
48 |
|
lediv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 ≤ π ↔ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) |
49 |
1 38 48
|
mp3an23 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ π ↔ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝐴 ∈ ℝ → ( ( - π ≤ 𝐴 ∧ 𝐴 ≤ π ) ↔ ( - ( π / 2 ) ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) ) |
51 |
|
rehalfcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ ) |
52 |
51
|
rexrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ* ) |
53 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
54 |
53
|
renegcli |
⊢ - ( π / 2 ) ∈ ℝ |
55 |
54
|
rexri |
⊢ - ( π / 2 ) ∈ ℝ* |
56 |
53
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
57 |
|
elicc4 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ ( 𝐴 / 2 ) ∈ ℝ* ) → ( ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( - ( π / 2 ) ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) ) |
58 |
55 56 57
|
mp3an12 |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ* → ( ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( - ( π / 2 ) ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) ) |
59 |
52 58
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( - ( π / 2 ) ≤ ( 𝐴 / 2 ) ∧ ( 𝐴 / 2 ) ≤ ( π / 2 ) ) ) ) |
60 |
50 59
|
bitr4d |
⊢ ( 𝐴 ∈ ℝ → ( ( - π ≤ 𝐴 ∧ 𝐴 ≤ π ) ↔ ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ) |
61 |
60
|
biimpd |
⊢ ( 𝐴 ∈ ℝ → ( ( - π ≤ 𝐴 ∧ 𝐴 ≤ π ) → ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ) |
62 |
61
|
3impib |
⊢ ( ( 𝐴 ∈ ℝ ∧ - π ≤ 𝐴 ∧ 𝐴 ≤ π ) → ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
63 |
35 62
|
sylbi |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
64 |
|
cosq14ge0 |
⊢ ( ( 𝐴 / 2 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → 0 ≤ ( cos ‘ ( 𝐴 / 2 ) ) ) |
65 |
63 64
|
syl |
⊢ ( 𝐴 ∈ ( - π [,] π ) → 0 ≤ ( cos ‘ ( 𝐴 / 2 ) ) ) |
66 |
12 33
|
sqrtge0d |
⊢ ( 𝐴 ∈ ( - π [,] π ) → 0 ≤ ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |
67 |
5
|
recnd |
⊢ ( 𝐴 ∈ ( - π [,] π ) → 𝐴 ∈ ℂ ) |
68 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
69 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
70 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ) → ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
71 |
68 69 70
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
72 |
71
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
73 |
72
|
sqsqrtd |
⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) = ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) |
74 |
|
divcan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
75 |
42 43 74
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( 𝐴 / 2 ) ) = 𝐴 ) |
76 |
75
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( cos ‘ 𝐴 ) ) |
77 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
78 |
|
cos2t |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
79 |
77 78
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 2 · ( 𝐴 / 2 ) ) ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
80 |
76 79
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) |
81 |
80
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( cos ‘ 𝐴 ) ) = ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) ) |
82 |
81
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) = ( ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) / 2 ) ) |
83 |
77
|
coscld |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
84 |
83
|
sqcld |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) |
85 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) |
86 |
42 85
|
mpan |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) |
87 |
|
pncan3 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ∈ ℂ ) → ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) = ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
88 |
68 86 87
|
sylancr |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) = ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) ) |
89 |
88
|
oveq1d |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) / 2 ) = ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) / 2 ) ) |
90 |
|
divcan3 |
⊢ ( ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) / 2 ) = ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
91 |
42 43 90
|
mp3an23 |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) / 2 ) = ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
92 |
89 91
|
eqtrd |
⊢ ( ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ∈ ℂ → ( ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) / 2 ) = ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
93 |
84 92
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( ( 2 · ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) − 1 ) ) / 2 ) = ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) ) |
94 |
73 82 93
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) |
95 |
67 94
|
syl |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( ( cos ‘ ( 𝐴 / 2 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ↑ 2 ) ) |
96 |
7 34 65 66 95
|
sq11d |
⊢ ( 𝐴 ∈ ( - π [,] π ) → ( cos ‘ ( 𝐴 / 2 ) ) = ( √ ‘ ( ( 1 + ( cos ‘ 𝐴 ) ) / 2 ) ) ) |