Metamath Proof Explorer


Theorem leceifl

Description: Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion leceifl A B A B A B

Proof

Step Hyp Ref Expression
1 ltflcei B A B < A B < A
2 1 ancoms A B B < A B < A
3 2 notbid A B ¬ B < A ¬ B < A
4 reflcl B B
5 lenlt A B A B ¬ B < A
6 4 5 sylan2 A B A B ¬ B < A
7 ceicl A A
8 7 zred A A
9 lenlt A B A B ¬ B < A
10 8 9 sylan A B A B ¬ B < A
11 3 6 10 3bitr4rd A B A B A B