| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hodid |
|- ( T : ~H --> ~H -> ( T -op T ) = 0hop ) |
| 2 |
|
0hmop |
|- 0hop e. HrmOp |
| 3 |
1 2
|
eqeltrdi |
|- ( T : ~H --> ~H -> ( T -op T ) e. HrmOp ) |
| 4 |
|
0le0 |
|- 0 <_ 0 |
| 5 |
1
|
adantr |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T -op T ) = 0hop ) |
| 6 |
5
|
fveq1d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( T -op T ) ` x ) = ( 0hop ` x ) ) |
| 7 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
| 8 |
7
|
adantl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
| 9 |
6 8
|
eqtrd |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( T -op T ) ` x ) = 0h ) |
| 10 |
9
|
oveq1d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( ( T -op T ) ` x ) .ih x ) = ( 0h .ih x ) ) |
| 11 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
| 12 |
11
|
adantl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 0h .ih x ) = 0 ) |
| 13 |
10 12
|
eqtr2d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> 0 = ( ( ( T -op T ) ` x ) .ih x ) ) |
| 14 |
4 13
|
breqtrid |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
| 15 |
14
|
ralrimiva |
|- ( T : ~H --> ~H -> A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
| 16 |
|
ax-hilex |
|- ~H e. _V |
| 17 |
|
fex |
|- ( ( T : ~H --> ~H /\ ~H e. _V ) -> T e. _V ) |
| 18 |
16 17
|
mpan2 |
|- ( T : ~H --> ~H -> T e. _V ) |
| 19 |
|
leopg |
|- ( ( T e. _V /\ T e. _V ) -> ( T <_op T <-> ( ( T -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) ) |
| 20 |
18 18 19
|
syl2anc |
|- ( T : ~H --> ~H -> ( T <_op T <-> ( ( T -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) ) |
| 21 |
3 15 20
|
mpbir2and |
|- ( T : ~H --> ~H -> T <_op T ) |