Step |
Hyp |
Ref |
Expression |
1 |
|
hodid |
|- ( T : ~H --> ~H -> ( T -op T ) = 0hop ) |
2 |
|
0hmop |
|- 0hop e. HrmOp |
3 |
1 2
|
eqeltrdi |
|- ( T : ~H --> ~H -> ( T -op T ) e. HrmOp ) |
4 |
|
0le0 |
|- 0 <_ 0 |
5 |
1
|
adantr |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T -op T ) = 0hop ) |
6 |
5
|
fveq1d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( T -op T ) ` x ) = ( 0hop ` x ) ) |
7 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
8 |
7
|
adantl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
9 |
6 8
|
eqtrd |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( T -op T ) ` x ) = 0h ) |
10 |
9
|
oveq1d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( ( T -op T ) ` x ) .ih x ) = ( 0h .ih x ) ) |
11 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
12 |
11
|
adantl |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( 0h .ih x ) = 0 ) |
13 |
10 12
|
eqtr2d |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> 0 = ( ( ( T -op T ) ` x ) .ih x ) ) |
14 |
4 13
|
breqtrid |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
15 |
14
|
ralrimiva |
|- ( T : ~H --> ~H -> A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
16 |
|
ax-hilex |
|- ~H e. _V |
17 |
|
fex |
|- ( ( T : ~H --> ~H /\ ~H e. _V ) -> T e. _V ) |
18 |
16 17
|
mpan2 |
|- ( T : ~H --> ~H -> T e. _V ) |
19 |
|
leopg |
|- ( ( T e. _V /\ T e. _V ) -> ( T <_op T <-> ( ( T -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) ) |
20 |
18 18 19
|
syl2anc |
|- ( T : ~H --> ~H -> ( T <_op T <-> ( ( T -op T ) e. HrmOp /\ A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) ) |
21 |
3 15 20
|
mpbir2and |
|- ( T : ~H --> ~H -> T <_op T ) |