| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hodid |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 −op 𝑇 ) = 0hop ) |
| 2 |
|
0hmop |
⊢ 0hop ∈ HrmOp |
| 3 |
1 2
|
eqeltrdi |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 −op 𝑇 ) ∈ HrmOp ) |
| 4 |
|
0le0 |
⊢ 0 ≤ 0 |
| 5 |
1
|
adantr |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 −op 𝑇 ) = 0hop ) |
| 6 |
5
|
fveq1d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 7 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 9 |
6 8
|
eqtrd |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) = 0ℎ ) |
| 10 |
9
|
oveq1d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( 0ℎ ·ih 𝑥 ) ) |
| 11 |
|
hi01 |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ ·ih 𝑥 ) = 0 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 0ℎ ·ih 𝑥 ) = 0 ) |
| 13 |
10 12
|
eqtr2d |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → 0 = ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 14 |
4 13
|
breqtrid |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 16 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 17 |
|
fex |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V ) |
| 18 |
16 17
|
mpan2 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 ∈ V ) |
| 19 |
|
leopg |
⊢ ( ( 𝑇 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑇 ≤op 𝑇 ↔ ( ( 𝑇 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 20 |
18 18 19
|
syl2anc |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ≤op 𝑇 ↔ ( ( 𝑇 −op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 −op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) ) |
| 21 |
3 15 20
|
mpbir2and |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 ≤op 𝑇 ) |