Metamath Proof Explorer


Theorem leoprf2

Description: The ordering relation for operators is reflexive. (Contributed by NM, 24-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf2 ( 𝑇 : ℋ ⟶ ℋ → 𝑇op 𝑇 )

Proof

Step Hyp Ref Expression
1 hodid ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ) = 0hop )
2 0hmop 0hop ∈ HrmOp
3 1 2 eqeltrdi ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ) ∈ HrmOp )
4 0le0 0 ≤ 0
5 1 adantr ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇op 𝑇 ) = 0hop )
6 5 fveq1d ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
7 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
8 7 adantl ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 0hop𝑥 ) = 0 )
9 6 8 eqtrd ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) = 0 )
10 9 oveq1d ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( 0 ·ih 𝑥 ) )
11 hi01 ( 𝑥 ∈ ℋ → ( 0 ·ih 𝑥 ) = 0 )
12 11 adantl ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 0 ·ih 𝑥 ) = 0 )
13 10 12 eqtr2d ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → 0 = ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
14 4 13 breqtrid ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
15 14 ralrimiva ( 𝑇 : ℋ ⟶ ℋ → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
16 ax-hilex ℋ ∈ V
17 fex ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V )
18 16 17 mpan2 ( 𝑇 : ℋ ⟶ ℋ → 𝑇 ∈ V )
19 leopg ( ( 𝑇 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑇op 𝑇 ↔ ( ( 𝑇op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
20 18 18 19 syl2anc ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ↔ ( ( 𝑇op 𝑇 ) ∈ HrmOp ∧ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) )
21 3 15 20 mpbir2and ( 𝑇 : ℋ ⟶ ℋ → 𝑇op 𝑇 )