Step |
Hyp |
Ref |
Expression |
1 |
|
neg0 |
|- -u 0 = 0 |
2 |
|
simpr |
|- ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> N = 0 ) |
3 |
2
|
negeqd |
|- ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> -u N = -u 0 ) |
4 |
1 3 2
|
3eqtr4a |
|- ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> -u N = N ) |
5 |
4
|
oveq2d |
|- ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> ( A /L -u N ) = ( A /L N ) ) |
6 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
7 |
|
lgsneg |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) ) |
8 |
6 7
|
syl3an1 |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) ) |
9 |
|
nn0nlt0 |
|- ( A e. NN0 -> -. A < 0 ) |
10 |
9
|
3ad2ant1 |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> -. A < 0 ) |
11 |
10
|
iffalsed |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
12 |
11
|
oveq1d |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) = ( 1 x. ( A /L N ) ) ) |
13 |
6
|
3ad2ant1 |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> A e. ZZ ) |
14 |
|
simp2 |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> N e. ZZ ) |
15 |
|
lgscl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) |
16 |
13 14 15
|
syl2anc |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) e. ZZ ) |
17 |
16
|
zcnd |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) e. CC ) |
18 |
17
|
mulid2d |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( 1 x. ( A /L N ) ) = ( A /L N ) ) |
19 |
8 12 18
|
3eqtrd |
|- ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( A /L N ) ) |
20 |
19
|
3expa |
|- ( ( ( A e. NN0 /\ N e. ZZ ) /\ N =/= 0 ) -> ( A /L -u N ) = ( A /L N ) ) |
21 |
5 20
|
pm2.61dane |
|- ( ( A e. NN0 /\ N e. ZZ ) -> ( A /L -u N ) = ( A /L N ) ) |