| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 2 |  | simpr |  |-  ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> N = 0 ) | 
						
							| 3 | 2 | negeqd |  |-  ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> -u N = -u 0 ) | 
						
							| 4 | 1 3 2 | 3eqtr4a |  |-  ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> -u N = N ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( ( A e. NN0 /\ N e. ZZ ) /\ N = 0 ) -> ( A /L -u N ) = ( A /L N ) ) | 
						
							| 6 |  | nn0z |  |-  ( A e. NN0 -> A e. ZZ ) | 
						
							| 7 |  | lgsneg |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) ) | 
						
							| 8 | 6 7 | syl3an1 |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) ) | 
						
							| 9 |  | nn0nlt0 |  |-  ( A e. NN0 -> -. A < 0 ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> -. A < 0 ) | 
						
							| 11 | 10 | iffalsed |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) = ( 1 x. ( A /L N ) ) ) | 
						
							| 13 | 6 | 3ad2ant1 |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> A e. ZZ ) | 
						
							| 14 |  | simp2 |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> N e. ZZ ) | 
						
							| 15 |  | lgscl |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) | 
						
							| 16 | 13 14 15 | syl2anc |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) e. CC ) | 
						
							| 18 | 17 | mullidd |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( 1 x. ( A /L N ) ) = ( A /L N ) ) | 
						
							| 19 | 8 12 18 | 3eqtrd |  |-  ( ( A e. NN0 /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( A /L N ) ) | 
						
							| 20 | 19 | 3expa |  |-  ( ( ( A e. NN0 /\ N e. ZZ ) /\ N =/= 0 ) -> ( A /L -u N ) = ( A /L N ) ) | 
						
							| 21 | 5 20 | pm2.61dane |  |-  ( ( A e. NN0 /\ N e. ZZ ) -> ( A /L -u N ) = ( A /L N ) ) |