| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 2 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 3 | 2 | negeqd | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  - 𝑁  =  - 0 ) | 
						
							| 4 | 1 3 2 | 3eqtr4a | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  - 𝑁  =  𝑁 ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 6 |  | nn0z | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℤ ) | 
						
							| 7 |  | lgsneg | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 9 |  | nn0nlt0 | ⊢ ( 𝐴  ∈  ℕ0  →  ¬  𝐴  <  0 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ¬  𝐴  <  0 ) | 
						
							| 11 | 10 | iffalsed | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  1 ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( 𝐴  /L  𝑁 ) )  =  ( 1  ·  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 13 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐴  ∈  ℤ ) | 
						
							| 14 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 15 |  | lgscl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  𝑁 )  ∈  ℤ ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  𝑁 )  ∈  ℤ ) | 
						
							| 17 | 16 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  𝑁 )  ∈  ℂ ) | 
						
							| 18 | 17 | mullidd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 1  ·  ( 𝐴  /L  𝑁 ) )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 19 | 8 12 18 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 20 | 19 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 21 | 5 20 | pm2.61dane | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  /L  - 𝑁 )  =  ( 𝐴  /L  𝑁 ) ) |