| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue | ⊢ ( 𝐴  <  0  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  - 1 ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  - 1 ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  ( - 1  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( if ( 𝑁  <  0 ,  - 1 ,  1 )  =  - 1  →  ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  ( - 1  ·  - 1 ) ) | 
						
							| 5 |  | neg1mulneg1e1 | ⊢ ( - 1  ·  - 1 )  =  1 | 
						
							| 6 | 4 5 | eqtrdi | ⊢ ( if ( 𝑁  <  0 ,  - 1 ,  1 )  =  - 1  →  ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  1 ) | 
						
							| 7 |  | oveq2 | ⊢ ( if ( 𝑁  <  0 ,  - 1 ,  1 )  =  1  →  ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  ( - 1  ·  1 ) ) | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 | 8 | mulm1i | ⊢ ( - 1  ·  1 )  =  - 1 | 
						
							| 10 | 7 9 | eqtrdi | ⊢ ( if ( 𝑁  <  0 ,  - 1 ,  1 )  =  1  →  ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  - 1 ) | 
						
							| 11 | 6 10 | ifsb | ⊢ ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  if ( 𝑁  <  0 ,  1 ,  - 1 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  𝐴  <  0 ) | 
						
							| 13 | 12 | biantrud | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 𝑁  <  0  ↔  ( 𝑁  <  0  ∧  𝐴  <  0 ) ) ) | 
						
							| 14 | 13 | ifbid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  if ( 𝑁  <  0 ,  - 1 ,  1 )  =  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( - 1  ·  if ( 𝑁  <  0 ,  - 1 ,  1 ) )  =  ( - 1  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) ) | 
						
							| 16 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  𝑁  ≠  0 ) | 
						
							| 17 | 16 | necomd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  0  ≠  𝑁 ) | 
						
							| 18 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 18 | zred | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  𝑁  ∈  ℝ ) | 
						
							| 20 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 21 |  | ltlen | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝑁  <  0  ↔  ( 𝑁  ≤  0  ∧  0  ≠  𝑁 ) ) ) | 
						
							| 22 | 19 20 21 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 𝑁  <  0  ↔  ( 𝑁  ≤  0  ∧  0  ≠  𝑁 ) ) ) | 
						
							| 23 | 17 22 | mpbiran2d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 𝑁  <  0  ↔  𝑁  ≤  0 ) ) | 
						
							| 24 | 19 | le0neg1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 𝑁  ≤  0  ↔  0  ≤  - 𝑁 ) ) | 
						
							| 25 | 19 | renegcld | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  - 𝑁  ∈  ℝ ) | 
						
							| 26 |  | lenlt | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝑁  ∈  ℝ )  →  ( 0  ≤  - 𝑁  ↔  ¬  - 𝑁  <  0 ) ) | 
						
							| 27 | 20 25 26 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 0  ≤  - 𝑁  ↔  ¬  - 𝑁  <  0 ) ) | 
						
							| 28 | 23 24 27 | 3bitrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( 𝑁  <  0  ↔  ¬  - 𝑁  <  0 ) ) | 
						
							| 29 | 28 | ifbid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  if ( 𝑁  <  0 ,  1 ,  - 1 )  =  if ( ¬  - 𝑁  <  0 ,  1 ,  - 1 ) ) | 
						
							| 30 |  | ifnot | ⊢ if ( ¬  - 𝑁  <  0 ,  1 ,  - 1 )  =  if ( - 𝑁  <  0 ,  - 1 ,  1 ) | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  if ( 𝑁  <  0 ,  1 ,  - 1 )  =  if ( - 𝑁  <  0 ,  - 1 ,  1 ) ) | 
						
							| 32 | 11 15 31 | 3eqtr3a | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( - 1  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  if ( - 𝑁  <  0 ,  - 1 ,  1 ) ) | 
						
							| 33 | 12 | biantrud | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( - 𝑁  <  0  ↔  ( - 𝑁  <  0  ∧  𝐴  <  0 ) ) ) | 
						
							| 34 | 33 | ifbid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  if ( - 𝑁  <  0 ,  - 1 ,  1 )  =  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) | 
						
							| 35 | 3 32 34 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝐴  <  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) | 
						
							| 36 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 37 |  | iffalse | ⊢ ( ¬  𝐴  <  0  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  1 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  1 ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  ¬  𝐴  <  0 ) | 
						
							| 40 | 39 | intnand | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  ¬  ( 𝑁  <  0  ∧  𝐴  <  0 ) ) | 
						
							| 41 | 40 | iffalsed | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  =  1 ) | 
						
							| 42 | 38 41 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  ( 1  ·  1 ) ) | 
						
							| 43 | 39 | intnand | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  ¬  ( - 𝑁  <  0  ∧  𝐴  <  0 ) ) | 
						
							| 44 | 43 | iffalsed | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  =  1 ) | 
						
							| 45 | 36 42 44 | 3eqtr4a | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ¬  𝐴  <  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) | 
						
							| 46 | 35 45 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  =  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℙ )  →  𝑛  ∈  ℙ ) | 
						
							| 49 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℙ )  →  𝑁  ∈  ℤ ) | 
						
							| 50 |  | zq | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℚ ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℙ )  →  𝑁  ∈  ℚ ) | 
						
							| 52 |  | pcneg | ⊢ ( ( 𝑛  ∈  ℙ  ∧  𝑁  ∈  ℚ )  →  ( 𝑛  pCnt  - 𝑁 )  =  ( 𝑛  pCnt  𝑁 ) ) | 
						
							| 53 | 48 51 52 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℙ )  →  ( 𝑛  pCnt  - 𝑁 )  =  ( 𝑛  pCnt  𝑁 ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑛  ∈  ℙ )  →  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) )  =  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ) | 
						
							| 55 | 54 | ifeq1da | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 )  =  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 56 | 55 | mpteq2dv | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) | 
						
							| 57 | 56 | seqeq3d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ) | 
						
							| 58 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝑁  ∈  ℂ ) | 
						
							| 60 | 59 | absnegd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ - 𝑁 )  =  ( abs ‘ 𝑁 ) ) | 
						
							| 61 | 57 60 | fveq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ - 𝑁 ) )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) | 
						
							| 62 | 47 61 | oveq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) )  =  ( ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 63 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 64 | 63 8 | ifcli | ⊢ if ( 𝐴  <  0 ,  - 1 ,  1 )  ∈  ℂ | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  if ( 𝐴  <  0 ,  - 1 ,  1 )  ∈  ℂ ) | 
						
							| 66 | 63 8 | ifcli | ⊢ if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ∈  ℂ | 
						
							| 67 | 66 | a1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ∈  ℂ ) | 
						
							| 68 |  | nnabscl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 69 | 68 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 70 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 71 | 69 70 | eleqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( abs ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 72 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 73 | 72 | lgsfcl3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) : ℕ ⟶ ℤ ) | 
						
							| 74 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... ( abs ‘ 𝑁 ) )  →  𝑥  ∈  ℕ ) | 
						
							| 75 |  | ffvelcdm | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) : ℕ ⟶ ℤ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 76 | 73 74 75 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  𝑥  ∈  ( 1 ... ( abs ‘ 𝑁 ) ) )  →  ( ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 77 |  | zmulcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 79 | 71 76 78 | seqcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) )  ∈  ℤ ) | 
						
							| 80 | 79 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 81 | 65 67 80 | mulassd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 ) )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) | 
						
							| 82 | 62 81 | eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) | 
						
							| 83 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐴  ∈  ℤ ) | 
						
							| 84 |  | znegcl | ⊢ ( 𝑁  ∈  ℤ  →  - 𝑁  ∈  ℤ ) | 
						
							| 85 | 84 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  - 𝑁  ∈  ℤ ) | 
						
							| 86 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝑁  ≠  0 ) | 
						
							| 87 | 59 86 | negne0d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  - 𝑁  ≠  0 ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) | 
						
							| 89 | 88 | lgsval4 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝑁  ∈  ℤ  ∧  - 𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) ) | 
						
							| 90 | 83 85 87 89 | syl3anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( if ( ( - 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  - 𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) ) | 
						
							| 91 | 72 | lgsval4 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  𝑁 )  =  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 92 | 91 | oveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( 𝐴  /L  𝑁 ) )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) | 
						
							| 93 | 82 90 92 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  - 𝑁 )  =  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  ( 𝐴  /L  𝑁 ) ) ) |