Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
⊢ ( 𝐴 < 0 → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → if ( 𝐴 < 0 , - 1 , 1 ) = - 1 ) |
3 |
2
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = ( - 1 · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) ) |
4 |
|
oveq2 |
⊢ ( if ( 𝑁 < 0 , - 1 , 1 ) = - 1 → ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = ( - 1 · - 1 ) ) |
5 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
6 |
4 5
|
eqtrdi |
⊢ ( if ( 𝑁 < 0 , - 1 , 1 ) = - 1 → ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = 1 ) |
7 |
|
oveq2 |
⊢ ( if ( 𝑁 < 0 , - 1 , 1 ) = 1 → ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = ( - 1 · 1 ) ) |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
8
|
mulm1i |
⊢ ( - 1 · 1 ) = - 1 |
10 |
7 9
|
eqtrdi |
⊢ ( if ( 𝑁 < 0 , - 1 , 1 ) = 1 → ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = - 1 ) |
11 |
6 10
|
ifsb |
⊢ ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = if ( 𝑁 < 0 , 1 , - 1 ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
13 |
12
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 𝑁 < 0 ↔ ( 𝑁 < 0 ∧ 𝐴 < 0 ) ) ) |
14 |
13
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → if ( 𝑁 < 0 , - 1 , 1 ) = if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
15 |
14
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( - 1 · if ( 𝑁 < 0 , - 1 , 1 ) ) = ( - 1 · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) ) |
16 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → 𝑁 ≠ 0 ) |
17 |
16
|
necomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → 0 ≠ 𝑁 ) |
18 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → 𝑁 ∈ ℤ ) |
19 |
18
|
zred |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → 𝑁 ∈ ℝ ) |
20 |
|
0re |
⊢ 0 ∈ ℝ |
21 |
|
ltlen |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑁 < 0 ↔ ( 𝑁 ≤ 0 ∧ 0 ≠ 𝑁 ) ) ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 𝑁 < 0 ↔ ( 𝑁 ≤ 0 ∧ 0 ≠ 𝑁 ) ) ) |
23 |
17 22
|
mpbiran2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 𝑁 < 0 ↔ 𝑁 ≤ 0 ) ) |
24 |
19
|
le0neg1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) |
25 |
19
|
renegcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → - 𝑁 ∈ ℝ ) |
26 |
|
lenlt |
⊢ ( ( 0 ∈ ℝ ∧ - 𝑁 ∈ ℝ ) → ( 0 ≤ - 𝑁 ↔ ¬ - 𝑁 < 0 ) ) |
27 |
20 25 26
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 0 ≤ - 𝑁 ↔ ¬ - 𝑁 < 0 ) ) |
28 |
23 24 27
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( 𝑁 < 0 ↔ ¬ - 𝑁 < 0 ) ) |
29 |
28
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → if ( 𝑁 < 0 , 1 , - 1 ) = if ( ¬ - 𝑁 < 0 , 1 , - 1 ) ) |
30 |
|
ifnot |
⊢ if ( ¬ - 𝑁 < 0 , 1 , - 1 ) = if ( - 𝑁 < 0 , - 1 , 1 ) |
31 |
29 30
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → if ( 𝑁 < 0 , 1 , - 1 ) = if ( - 𝑁 < 0 , - 1 , 1 ) ) |
32 |
11 15 31
|
3eqtr3a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( - 1 · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = if ( - 𝑁 < 0 , - 1 , 1 ) ) |
33 |
12
|
biantrud |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( - 𝑁 < 0 ↔ ( - 𝑁 < 0 ∧ 𝐴 < 0 ) ) ) |
34 |
33
|
ifbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → if ( - 𝑁 < 0 , - 1 , 1 ) = if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
35 |
3 32 34
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝐴 < 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
36 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
37 |
|
iffalse |
⊢ ( ¬ 𝐴 < 0 → if ( 𝐴 < 0 , - 1 , 1 ) = 1 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → if ( 𝐴 < 0 , - 1 , 1 ) = 1 ) |
39 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → ¬ 𝐴 < 0 ) |
40 |
39
|
intnand |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → ¬ ( 𝑁 < 0 ∧ 𝐴 < 0 ) ) |
41 |
40
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) = 1 ) |
42 |
38 41
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = ( 1 · 1 ) ) |
43 |
39
|
intnand |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → ¬ ( - 𝑁 < 0 ∧ 𝐴 < 0 ) ) |
44 |
43
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) = 1 ) |
45 |
36 42 44
|
3eqtr4a |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ¬ 𝐴 < 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
46 |
35 45
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) = if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) = ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) ) |
48 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℙ ) → 𝑛 ∈ ℙ ) |
49 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
50 |
|
zq |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℚ ) |
51 |
49 50
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℙ ) → 𝑁 ∈ ℚ ) |
52 |
|
pcneg |
⊢ ( ( 𝑛 ∈ ℙ ∧ 𝑁 ∈ ℚ ) → ( 𝑛 pCnt - 𝑁 ) = ( 𝑛 pCnt 𝑁 ) ) |
53 |
48 51 52
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℙ ) → ( 𝑛 pCnt - 𝑁 ) = ( 𝑛 pCnt 𝑁 ) ) |
54 |
53
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑛 ∈ ℙ ) → ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) = ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) ) |
55 |
54
|
ifeq1da |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) = if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
56 |
55
|
mpteq2dv |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) |
57 |
56
|
seqeq3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ) |
58 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℂ ) |
60 |
59
|
absnegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ - 𝑁 ) = ( abs ‘ 𝑁 ) ) |
61 |
57 60
|
fveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) |
62 |
47 61
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) = ( ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) |
63 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
64 |
63 8
|
ifcli |
⊢ if ( 𝐴 < 0 , - 1 , 1 ) ∈ ℂ |
65 |
64
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → if ( 𝐴 < 0 , - 1 , 1 ) ∈ ℂ ) |
66 |
63 8
|
ifcli |
⊢ if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ∈ ℂ |
67 |
66
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ∈ ℂ ) |
68 |
|
nnabscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
69 |
68
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
70 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
71 |
69 70
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
72 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
73 |
72
|
lgsfcl3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) : ℕ ⟶ ℤ ) |
74 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( abs ‘ 𝑁 ) ) → 𝑥 ∈ ℕ ) |
75 |
|
ffvelrn |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) : ℕ ⟶ ℤ ∧ 𝑥 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ‘ 𝑥 ) ∈ ℤ ) |
76 |
73 74 75
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ 𝑥 ∈ ( 1 ... ( abs ‘ 𝑁 ) ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ‘ 𝑥 ) ∈ ℤ ) |
77 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
78 |
77
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
79 |
71 76 78
|
seqcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ∈ ℤ ) |
80 |
79
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ∈ ℂ ) |
81 |
65 67 80
|
mulassd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( if ( 𝐴 < 0 , - 1 , 1 ) · if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) = ( if ( 𝐴 < 0 , - 1 , 1 ) · ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |
82 |
62 81
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) = ( if ( 𝐴 < 0 , - 1 , 1 ) · ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |
83 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝐴 ∈ ℤ ) |
84 |
|
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
85 |
84
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → - 𝑁 ∈ ℤ ) |
86 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ≠ 0 ) |
87 |
59 86
|
negne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → - 𝑁 ≠ 0 ) |
88 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) |
89 |
88
|
lgsval4 |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝑁 ∈ ℤ ∧ - 𝑁 ≠ 0 ) → ( 𝐴 /L - 𝑁 ) = ( if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) ) |
90 |
83 85 87 89
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐴 /L - 𝑁 ) = ( if ( ( - 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt - 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ - 𝑁 ) ) ) ) |
91 |
72
|
lgsval4 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐴 /L 𝑁 ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) |
92 |
91
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( if ( 𝐴 < 0 , - 1 , 1 ) · ( 𝐴 /L 𝑁 ) ) = ( if ( 𝐴 < 0 , - 1 , 1 ) · ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |
93 |
82 90 92
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐴 /L - 𝑁 ) = ( if ( 𝐴 < 0 , - 1 , 1 ) · ( 𝐴 /L 𝑁 ) ) ) |