Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
|
2 |
1
|
adantl |
|
3 |
2
|
oveq1d |
|
4 |
|
oveq2 |
|
5 |
|
neg1mulneg1e1 |
|
6 |
4 5
|
eqtrdi |
|
7 |
|
oveq2 |
|
8 |
|
ax-1cn |
|
9 |
8
|
mulm1i |
|
10 |
7 9
|
eqtrdi |
|
11 |
6 10
|
ifsb |
|
12 |
|
simpr |
|
13 |
12
|
biantrud |
|
14 |
13
|
ifbid |
|
15 |
14
|
oveq2d |
|
16 |
|
simpl3 |
|
17 |
16
|
necomd |
|
18 |
|
simpl2 |
|
19 |
18
|
zred |
|
20 |
|
0re |
|
21 |
|
ltlen |
|
22 |
19 20 21
|
sylancl |
|
23 |
17 22
|
mpbiran2d |
|
24 |
19
|
le0neg1d |
|
25 |
19
|
renegcld |
|
26 |
|
lenlt |
|
27 |
20 25 26
|
sylancr |
|
28 |
23 24 27
|
3bitrd |
|
29 |
28
|
ifbid |
|
30 |
|
ifnot |
|
31 |
29 30
|
eqtrdi |
|
32 |
11 15 31
|
3eqtr3a |
|
33 |
12
|
biantrud |
|
34 |
33
|
ifbid |
|
35 |
3 32 34
|
3eqtrd |
|
36 |
|
1t1e1 |
|
37 |
|
iffalse |
|
38 |
37
|
adantl |
|
39 |
|
simpr |
|
40 |
39
|
intnand |
|
41 |
40
|
iffalsed |
|
42 |
38 41
|
oveq12d |
|
43 |
39
|
intnand |
|
44 |
43
|
iffalsed |
|
45 |
36 42 44
|
3eqtr4a |
|
46 |
35 45
|
pm2.61dan |
|
47 |
46
|
eqcomd |
|
48 |
|
simpr |
|
49 |
|
simpl2 |
|
50 |
|
zq |
|
51 |
49 50
|
syl |
|
52 |
|
pcneg |
|
53 |
48 51 52
|
syl2anc |
|
54 |
53
|
oveq2d |
|
55 |
54
|
ifeq1da |
|
56 |
55
|
mpteq2dv |
|
57 |
56
|
seqeq3d |
|
58 |
|
zcn |
|
59 |
58
|
3ad2ant2 |
|
60 |
59
|
absnegd |
|
61 |
57 60
|
fveq12d |
|
62 |
47 61
|
oveq12d |
|
63 |
|
neg1cn |
|
64 |
63 8
|
ifcli |
|
65 |
64
|
a1i |
|
66 |
63 8
|
ifcli |
|
67 |
66
|
a1i |
|
68 |
|
nnabscl |
|
69 |
68
|
3adant1 |
|
70 |
|
nnuz |
|
71 |
69 70
|
eleqtrdi |
|
72 |
|
eqid |
|
73 |
72
|
lgsfcl3 |
|
74 |
|
elfznn |
|
75 |
|
ffvelrn |
|
76 |
73 74 75
|
syl2an |
|
77 |
|
zmulcl |
|
78 |
77
|
adantl |
|
79 |
71 76 78
|
seqcl |
|
80 |
79
|
zcnd |
|
81 |
65 67 80
|
mulassd |
|
82 |
62 81
|
eqtrd |
|
83 |
|
simp1 |
|
84 |
|
znegcl |
|
85 |
84
|
3ad2ant2 |
|
86 |
|
simp3 |
|
87 |
59 86
|
negne0d |
|
88 |
|
eqid |
|
89 |
88
|
lgsval4 |
|
90 |
83 85 87 89
|
syl3anc |
|
91 |
72
|
lgsval4 |
|
92 |
91
|
oveq2d |
|
93 |
82 90 92
|
3eqtr4d |
|