| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq | ⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 2 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 3 | 2 | ad2antrl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 4 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 5 | 4 | ad2antll | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ∈  ℂ ) | 
						
							| 6 |  | nnne0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ≠  0 ) | 
						
							| 7 | 6 | ad2antll | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  𝑦  ≠  0 ) | 
						
							| 8 | 3 5 7 | divnegd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  - ( 𝑥  /  𝑦 )  =  ( - 𝑥  /  𝑦 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑃  pCnt  - ( 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) ) ) | 
						
							| 10 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  =  0 )  →  𝑥  =  0 ) | 
						
							| 12 | 11 | negeqd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  =  0 )  →  - 𝑥  =  - 0 ) | 
						
							| 13 | 10 12 11 | 3eqtr4a | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  =  0 )  →  - 𝑥  =  𝑥 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  =  0 )  →  ( - 𝑥  /  𝑦 )  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  =  0 )  →  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  𝑃  ∈  ℙ ) | 
						
							| 17 |  | simplrl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  𝑥  ∈  ℤ ) | 
						
							| 18 | 17 | znegcld | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  - 𝑥  ∈  ℤ ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  𝑥  ≠  0 ) | 
						
							| 20 | 2 | negne0bd | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  ≠  0  ↔  - 𝑥  ≠  0 ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑥  ≠  0  ↔  - 𝑥  ≠  0 ) ) | 
						
							| 22 | 19 21 | mpbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  - 𝑥  ≠  0 ) | 
						
							| 23 |  | simplrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  𝑦  ∈  ℕ ) | 
						
							| 24 |  | pcdiv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( - 𝑥  ∈  ℤ  ∧  - 𝑥  ≠  0 )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  - 𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 25 | 16 18 22 23 24 | syl121anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  - 𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 26 |  | pcdiv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 27 | 16 17 19 23 26 | syl121anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 28 |  | eqid | ⊢ sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) | 
						
							| 29 | 28 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( - 𝑥  ∈  ℤ  ∧  - 𝑥  ≠  0 ) )  →  ( 𝑃  pCnt  - 𝑥 )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 30 | 16 18 22 29 | syl12anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  - 𝑥 )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 31 |  | eqid | ⊢ sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  𝑥 } ,  ℝ ,   <  )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  𝑥 } ,  ℝ ,   <  ) | 
						
							| 32 | 31 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ( 𝑃  pCnt  𝑥 )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 33 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 34 |  | zexpcl | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑦 )  ∈  ℤ ) | 
						
							| 35 | 33 34 | sylan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑦 )  ∈  ℤ ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 )  →  𝑥  ∈  ℤ ) | 
						
							| 37 |  | dvdsnegb | ⊢ ( ( ( 𝑃 ↑ 𝑦 )  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑃 ↑ 𝑦 )  ∥  𝑥  ↔  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 ) ) | 
						
							| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℕ0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ( ( 𝑃 ↑ 𝑦 )  ∥  𝑥  ↔  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 ) ) | 
						
							| 39 | 38 | an32s | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑃 ↑ 𝑦 )  ∥  𝑥  ↔  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 ) ) | 
						
							| 40 | 39 | rabbidva | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  𝑥 }  =  { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ) | 
						
							| 41 | 40 | supeq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  𝑥 } ,  ℝ ,   <  )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 42 | 32 41 | eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ( 𝑃  pCnt  𝑥 )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 43 | 16 17 19 42 | syl12anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  𝑥 )  =  sup ( { 𝑦  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑦 )  ∥  - 𝑥 } ,  ℝ ,   <  ) ) | 
						
							| 44 | 30 43 | eqtr4d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  - 𝑥 )  =  ( 𝑃  pCnt  𝑥 ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( ( 𝑃  pCnt  - 𝑥 )  −  ( 𝑃  pCnt  𝑦 ) )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 46 | 27 45 | eqtr4d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  - 𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 47 | 25 46 | eqtr4d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  ∧  𝑥  ≠  0 )  →  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 48 | 15 47 | pm2.61dane | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑃  pCnt  ( - 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 49 | 9 48 | eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝑃  pCnt  - ( 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 50 |  | negeq | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  - 𝐴  =  - ( 𝑥  /  𝑦 ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  - ( 𝑥  /  𝑦 ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝑃  pCnt  𝐴 )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 53 | 51 52 | eqeq12d | ⊢ ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  𝐴 )  ↔  ( 𝑃  pCnt  - ( 𝑥  /  𝑦 ) )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) ) | 
						
							| 54 | 49 53 | syl5ibrcom | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℕ ) )  →  ( 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 55 | 54 | rexlimdvva | ⊢ ( 𝑃  ∈  ℙ  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  →  ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 56 | 1 55 | biimtrid | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝐴  ∈  ℚ  →  ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℚ )  →  ( 𝑃  pCnt  - 𝐴 )  =  ( 𝑃  pCnt  𝐴 ) ) |