| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhp2a.l |
|- .<_ = ( le ` K ) |
| 2 |
|
lhp2a.a |
|- A = ( Atoms ` K ) |
| 3 |
|
lhp2a.h |
|- H = ( LHyp ` K ) |
| 4 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 5 |
|
eqid |
|- ( |
| 6 |
4 5 3
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
| 7 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
8 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 10 |
9
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
| 11 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 12 |
8 4
|
op1cl |
|- ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) |
| 13 |
11 12
|
syl |
|- ( K e. HL -> ( 1. ` K ) e. ( Base ` K ) ) |
| 14 |
13
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> ( 1. ` K ) e. ( Base ` K ) ) |
| 15 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 16 |
8 1 15 5 2
|
cvrval3 |
|- ( ( K e. HL /\ W e. ( Base ` K ) /\ ( 1. ` K ) e. ( Base ` K ) ) -> ( W ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) |
| 17 |
7 10 14 16
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> ( W ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) |
| 18 |
6 17
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) |
| 19 |
|
simpl |
|- ( ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> -. p .<_ W ) |
| 20 |
19
|
reximi |
|- ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> E. p e. A -. p .<_ W ) |
| 21 |
18 20
|
syl |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A -. p .<_ W ) |