| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpset.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | lhpset.u |  |-  .1. = ( 1. ` K ) | 
						
							| 3 |  | lhpset.c |  |-  C = (  | 
						
							| 4 |  | lhpset.h |  |-  H = ( LHyp ` K ) | 
						
							| 5 |  | elex |  |-  ( K e. A -> K e. _V ) | 
						
							| 6 |  | fveq2 |  |-  ( k = K -> ( Base ` k ) = ( Base ` K ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( k = K -> ( Base ` k ) = B ) | 
						
							| 8 |  | eqidd |  |-  ( k = K -> w = w ) | 
						
							| 9 |  | fveq2 |  |-  ( k = K -> (  | 
						
							| 10 | 9 3 | eqtr4di |  |-  ( k = K -> (  | 
						
							| 11 |  | fveq2 |  |-  ( k = K -> ( 1. ` k ) = ( 1. ` K ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( k = K -> ( 1. ` k ) = .1. ) | 
						
							| 13 | 8 10 12 | breq123d |  |-  ( k = K -> ( w (  w C .1. ) ) | 
						
							| 14 | 7 13 | rabeqbidv |  |-  ( k = K -> { w e. ( Base ` k ) | w (  | 
						
							| 15 |  | df-lhyp |  |-  LHyp = ( k e. _V |-> { w e. ( Base ` k ) | w (  | 
						
							| 16 | 1 | fvexi |  |-  B e. _V | 
						
							| 17 | 16 | rabex |  |-  { w e. B | w C .1. } e. _V | 
						
							| 18 | 14 15 17 | fvmpt |  |-  ( K e. _V -> ( LHyp ` K ) = { w e. B | w C .1. } ) | 
						
							| 19 | 4 18 | eqtrid |  |-  ( K e. _V -> H = { w e. B | w C .1. } ) | 
						
							| 20 | 5 19 | syl |  |-  ( K e. A -> H = { w e. B | w C .1. } ) |