Metamath Proof Explorer


Theorem lhpset

Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lhpset.b 𝐵 = ( Base ‘ 𝐾 )
lhpset.u 1 = ( 1. ‘ 𝐾 )
lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpset ( 𝐾𝐴𝐻 = { 𝑤𝐵𝑤 𝐶 1 } )

Proof

Step Hyp Ref Expression
1 lhpset.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpset.u 1 = ( 1. ‘ 𝐾 )
3 lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
5 elex ( 𝐾𝐴𝐾 ∈ V )
6 fveq2 ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) )
7 6 1 eqtr4di ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 )
8 eqidd ( 𝑘 = 𝐾𝑤 = 𝑤 )
9 fveq2 ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = ( ⋖ ‘ 𝐾 ) )
10 9 3 eqtr4di ( 𝑘 = 𝐾 → ( ⋖ ‘ 𝑘 ) = 𝐶 )
11 fveq2 ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = ( 1. ‘ 𝐾 ) )
12 11 2 eqtr4di ( 𝑘 = 𝐾 → ( 1. ‘ 𝑘 ) = 1 )
13 8 10 12 breq123d ( 𝑘 = 𝐾 → ( 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) ↔ 𝑤 𝐶 1 ) )
14 7 13 rabeqbidv ( 𝑘 = 𝐾 → { 𝑤 ∈ ( Base ‘ 𝑘 ) ∣ 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) } = { 𝑤𝐵𝑤 𝐶 1 } )
15 df-lhyp LHyp = ( 𝑘 ∈ V ↦ { 𝑤 ∈ ( Base ‘ 𝑘 ) ∣ 𝑤 ( ⋖ ‘ 𝑘 ) ( 1. ‘ 𝑘 ) } )
16 1 fvexi 𝐵 ∈ V
17 16 rabex { 𝑤𝐵𝑤 𝐶 1 } ∈ V
18 14 15 17 fvmpt ( 𝐾 ∈ V → ( LHyp ‘ 𝐾 ) = { 𝑤𝐵𝑤 𝐶 1 } )
19 4 18 syl5eq ( 𝐾 ∈ V → 𝐻 = { 𝑤𝐵𝑤 𝐶 1 } )
20 5 19 syl ( 𝐾𝐴𝐻 = { 𝑤𝐵𝑤 𝐶 1 } )