Metamath Proof Explorer


Theorem lhpset

Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lhpset.b B=BaseK
lhpset.u 1˙=1.K
lhpset.c C=K
lhpset.h H=LHypK
Assertion lhpset KAH=wB|wC1˙

Proof

Step Hyp Ref Expression
1 lhpset.b B=BaseK
2 lhpset.u 1˙=1.K
3 lhpset.c C=K
4 lhpset.h H=LHypK
5 elex KAKV
6 fveq2 k=KBasek=BaseK
7 6 1 eqtr4di k=KBasek=B
8 eqidd k=Kw=w
9 fveq2 k=Kk=K
10 9 3 eqtr4di k=Kk=C
11 fveq2 k=K1.k=1.K
12 11 2 eqtr4di k=K1.k=1˙
13 8 10 12 breq123d k=Kwk1.kwC1˙
14 7 13 rabeqbidv k=KwBasek|wk1.k=wB|wC1˙
15 df-lhyp LHyp=kVwBasek|wk1.k
16 1 fvexi BV
17 16 rabex wB|wC1˙V
18 14 15 17 fvmpt KVLHypK=wB|wC1˙
19 4 18 eqtrid KVH=wB|wC1˙
20 5 19 syl KAH=wB|wC1˙