| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupresre.1 |
|- ( ph -> F e. V ) |
| 2 |
|
id |
|- ( k e. RR -> k e. RR ) |
| 3 |
|
pnfxr |
|- +oo e. RR* |
| 4 |
3
|
a1i |
|- ( k e. RR -> +oo e. RR* ) |
| 5 |
|
icossre |
|- ( ( k e. RR /\ +oo e. RR* ) -> ( k [,) +oo ) C_ RR ) |
| 6 |
2 4 5
|
syl2anc |
|- ( k e. RR -> ( k [,) +oo ) C_ RR ) |
| 7 |
|
resima2 |
|- ( ( k [,) +oo ) C_ RR -> ( ( F |` RR ) " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
| 8 |
6 7
|
syl |
|- ( k e. RR -> ( ( F |` RR ) " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
| 9 |
8
|
ineq1d |
|- ( k e. RR -> ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 10 |
9
|
supeq1d |
|- ( k e. RR -> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 11 |
10
|
mpteq2ia |
|- ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 12 |
11
|
a1i |
|- ( ph -> ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 13 |
12
|
rneqd |
|- ( ph -> ran ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 14 |
13
|
infeq1d |
|- ( ph -> inf ( ran ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 15 |
1
|
resexd |
|- ( ph -> ( F |` RR ) e. _V ) |
| 16 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 17 |
16
|
limsupval |
|- ( ( F |` RR ) e. _V -> ( limsup ` ( F |` RR ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 18 |
15 17
|
syl |
|- ( ph -> ( limsup ` ( F |` RR ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` RR ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 19 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 20 |
19
|
limsupval |
|- ( F e. V -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 21 |
1 20
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 22 |
14 18 21
|
3eqtr4d |
|- ( ph -> ( limsup ` ( F |` RR ) ) = ( limsup ` F ) ) |