Metamath Proof Explorer


Theorem limsupresre

Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupresre.1 ( 𝜑𝐹𝑉 )
Assertion limsupresre ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = ( lim sup ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 limsupresre.1 ( 𝜑𝐹𝑉 )
2 id ( 𝑘 ∈ ℝ → 𝑘 ∈ ℝ )
3 pnfxr +∞ ∈ ℝ*
4 3 a1i ( 𝑘 ∈ ℝ → +∞ ∈ ℝ* )
5 icossre ( ( 𝑘 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑘 [,) +∞ ) ⊆ ℝ )
6 2 4 5 syl2anc ( 𝑘 ∈ ℝ → ( 𝑘 [,) +∞ ) ⊆ ℝ )
7 resima2 ( ( 𝑘 [,) +∞ ) ⊆ ℝ → ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
8 6 7 syl ( 𝑘 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
9 8 ineq1d ( 𝑘 ∈ ℝ → ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
10 9 supeq1d ( 𝑘 ∈ ℝ → sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
11 10 mpteq2ia ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
12 11 a1i ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
13 12 rneqd ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
14 13 infeq1d ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
15 1 resexd ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ V )
16 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
17 16 limsupval ( ( 𝐹 ↾ ℝ ) ∈ V → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
18 15 17 syl ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
19 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
20 19 limsupval ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
21 1 20 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
22 14 18 21 3eqtr4d ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = ( lim sup ‘ 𝐹 ) )