Step |
Hyp |
Ref |
Expression |
1 |
|
limsupresre.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
id |
⊢ ( 𝑘 ∈ ℝ → 𝑘 ∈ ℝ ) |
3 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℝ → +∞ ∈ ℝ* ) |
5 |
|
icossre |
⊢ ( ( 𝑘 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑘 [,) +∞ ) ⊆ ℝ ) |
6 |
2 4 5
|
syl2anc |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 [,) +∞ ) ⊆ ℝ ) |
7 |
|
resima2 |
⊢ ( ( 𝑘 [,) +∞ ) ⊆ ℝ → ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑘 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
9 |
8
|
ineq1d |
⊢ ( 𝑘 ∈ ℝ → ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
10 |
9
|
supeq1d |
⊢ ( 𝑘 ∈ ℝ → sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
11 |
10
|
mpteq2ia |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
13 |
12
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
14 |
13
|
infeq1d |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
15 |
1
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ V ) |
16 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
17 |
16
|
limsupval |
⊢ ( ( 𝐹 ↾ ℝ ) ∈ V → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
18 |
15 17
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ ℝ ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
19 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
20 |
19
|
limsupval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
22 |
14 18 21
|
3eqtr4d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ℝ ) ) = ( lim sup ‘ 𝐹 ) ) |