Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsni |
|- ( s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) -> s =/= ( 0g ` ( Scalar ` M ) ) ) |
2 |
1
|
adantl |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> s =/= ( 0g ` ( Scalar ` M ) ) ) |
3 |
|
simpl3 |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> S =/= ( 0g ` M ) ) |
4 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
5 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
6 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
7 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
8 |
|
eqid |
|- ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) |
9 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
10 |
|
simpl1 |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> M e. LVec ) |
11 |
|
eldifi |
|- ( s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) -> s e. ( Base ` ( Scalar ` M ) ) ) |
12 |
11
|
adantl |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> s e. ( Base ` ( Scalar ` M ) ) ) |
13 |
|
simpl2 |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> S e. ( Base ` M ) ) |
14 |
4 5 6 7 8 9 10 12 13
|
lvecvsn0 |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> ( ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> ( s =/= ( 0g ` ( Scalar ` M ) ) /\ S =/= ( 0g ` M ) ) ) ) |
15 |
2 3 14
|
mpbir2and |
|- ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> ( s ( .s ` M ) S ) =/= ( 0g ` M ) ) |
16 |
15
|
ralrimiva |
|- ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) ) |
17 |
|
lveclmod |
|- ( M e. LVec -> M e. LMod ) |
18 |
17
|
anim1i |
|- ( ( M e. LVec /\ S e. ( Base ` M ) ) -> ( M e. LMod /\ S e. ( Base ` M ) ) ) |
19 |
18
|
3adant3 |
|- ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> ( M e. LMod /\ S e. ( Base ` M ) ) ) |
20 |
4 6 7 8 9 5
|
snlindsntor |
|- ( ( M e. LMod /\ S e. ( Base ` M ) ) -> ( A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> { S } linIndS M ) ) |
21 |
19 20
|
syl |
|- ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> ( A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> { S } linIndS M ) ) |
22 |
16 21
|
mpbid |
|- ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> { S } linIndS M ) |