| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsni |  |-  ( s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) -> s =/= ( 0g ` ( Scalar ` M ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> s =/= ( 0g ` ( Scalar ` M ) ) ) | 
						
							| 3 |  | simpl3 |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> S =/= ( 0g ` M ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 5 |  | eqid |  |-  ( .s ` M ) = ( .s ` M ) | 
						
							| 6 |  | eqid |  |-  ( Scalar ` M ) = ( Scalar ` M ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 10 |  | simpl1 |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> M e. LVec ) | 
						
							| 11 |  | eldifi |  |-  ( s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) -> s e. ( Base ` ( Scalar ` M ) ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> s e. ( Base ` ( Scalar ` M ) ) ) | 
						
							| 13 |  | simpl2 |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> S e. ( Base ` M ) ) | 
						
							| 14 | 4 5 6 7 8 9 10 12 13 | lvecvsn0 |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> ( ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> ( s =/= ( 0g ` ( Scalar ` M ) ) /\ S =/= ( 0g ` M ) ) ) ) | 
						
							| 15 | 2 3 14 | mpbir2and |  |-  ( ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) /\ s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ) -> ( s ( .s ` M ) S ) =/= ( 0g ` M ) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) ) | 
						
							| 17 |  | lveclmod |  |-  ( M e. LVec -> M e. LMod ) | 
						
							| 18 | 17 | anim1i |  |-  ( ( M e. LVec /\ S e. ( Base ` M ) ) -> ( M e. LMod /\ S e. ( Base ` M ) ) ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> ( M e. LMod /\ S e. ( Base ` M ) ) ) | 
						
							| 20 | 4 6 7 8 9 5 | snlindsntor |  |-  ( ( M e. LMod /\ S e. ( Base ` M ) ) -> ( A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> { S } linIndS M ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> ( A. s e. ( ( Base ` ( Scalar ` M ) ) \ { ( 0g ` ( Scalar ` M ) ) } ) ( s ( .s ` M ) S ) =/= ( 0g ` M ) <-> { S } linIndS M ) ) | 
						
							| 22 | 16 21 | mpbid |  |-  ( ( M e. LVec /\ S e. ( Base ` M ) /\ S =/= ( 0g ` M ) ) -> { S } linIndS M ) |