Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsni |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) → 𝑠 ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → 𝑠 ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → 𝑆 ≠ ( 0g ‘ 𝑀 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
7 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → 𝑀 ∈ LVec ) |
11 |
|
eldifi |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) → 𝑠 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → 𝑠 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
13 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → 𝑆 ∈ ( Base ‘ 𝑀 ) ) |
14 |
4 5 6 7 8 9 10 12 13
|
lvecvsn0 |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → ( ( 𝑠 ( ·𝑠 ‘ 𝑀 ) 𝑆 ) ≠ ( 0g ‘ 𝑀 ) ↔ ( 𝑠 ≠ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ) ) |
15 |
2 3 14
|
mpbir2and |
⊢ ( ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) ∧ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ) → ( 𝑠 ( ·𝑠 ‘ 𝑀 ) 𝑆 ) ≠ ( 0g ‘ 𝑀 ) ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) → ∀ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ( 𝑠 ( ·𝑠 ‘ 𝑀 ) 𝑆 ) ≠ ( 0g ‘ 𝑀 ) ) |
17 |
|
lveclmod |
⊢ ( 𝑀 ∈ LVec → 𝑀 ∈ LMod ) |
18 |
17
|
anim1i |
⊢ ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ) ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ) ) |
20 |
4 6 7 8 9 5
|
snlindsntor |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ( 𝑠 ( ·𝑠 ‘ 𝑀 ) 𝑆 ) ≠ ( 0g ‘ 𝑀 ) ↔ { 𝑆 } linIndS 𝑀 ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) → ( ∀ 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑀 ) ) } ) ( 𝑠 ( ·𝑠 ‘ 𝑀 ) 𝑆 ) ≠ ( 0g ‘ 𝑀 ) ↔ { 𝑆 } linIndS 𝑀 ) ) |
22 |
16 21
|
mpbid |
⊢ ( ( 𝑀 ∈ LVec ∧ 𝑆 ∈ ( Base ‘ 𝑀 ) ∧ 𝑆 ≠ ( 0g ‘ 𝑀 ) ) → { 𝑆 } linIndS 𝑀 ) |