Metamath Proof Explorer


Theorem lindssnlvec

Description: A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019) (Revised by AV, 28-Apr-2019)

Ref Expression
Assertion lindssnlvec M LVec S Base M S 0 M S linIndS M

Proof

Step Hyp Ref Expression
1 eldifsni s Base Scalar M 0 Scalar M s 0 Scalar M
2 1 adantl M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s 0 Scalar M
3 simpl3 M LVec S Base M S 0 M s Base Scalar M 0 Scalar M S 0 M
4 eqid Base M = Base M
5 eqid M = M
6 eqid Scalar M = Scalar M
7 eqid Base Scalar M = Base Scalar M
8 eqid 0 Scalar M = 0 Scalar M
9 eqid 0 M = 0 M
10 simpl1 M LVec S Base M S 0 M s Base Scalar M 0 Scalar M M LVec
11 eldifi s Base Scalar M 0 Scalar M s Base Scalar M
12 11 adantl M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s Base Scalar M
13 simpl2 M LVec S Base M S 0 M s Base Scalar M 0 Scalar M S Base M
14 4 5 6 7 8 9 10 12 13 lvecvsn0 M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s M S 0 M s 0 Scalar M S 0 M
15 2 3 14 mpbir2and M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s M S 0 M
16 15 ralrimiva M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s M S 0 M
17 lveclmod M LVec M LMod
18 17 anim1i M LVec S Base M M LMod S Base M
19 18 3adant3 M LVec S Base M S 0 M M LMod S Base M
20 4 6 7 8 9 5 snlindsntor M LMod S Base M s Base Scalar M 0 Scalar M s M S 0 M S linIndS M
21 19 20 syl M LVec S Base M S 0 M s Base Scalar M 0 Scalar M s M S 0 M S linIndS M
22 16 21 mpbid M LVec S Base M S 0 M S linIndS M