Step |
Hyp |
Ref |
Expression |
1 |
|
linevalexample.p |
|- P = ( Poly1 ` ZZring ) |
2 |
|
linevalexample.b |
|- B = ( Base ` P ) |
3 |
|
linevalexample.x |
|- X = ( var1 ` ZZring ) |
4 |
|
linevalexample.m |
|- .- = ( -g ` P ) |
5 |
|
linevalexample.a |
|- A = ( algSc ` P ) |
6 |
|
linevalexample.g |
|- G = ( X .- ( A ` 3 ) ) |
7 |
|
linevalexample.o |
|- O = ( eval1 ` ZZring ) |
8 |
|
zringcrng |
|- ZZring e. CRing |
9 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
10 |
|
eqid |
|- ( X .- ( A ` 3 ) ) = ( X .- ( A ` 3 ) ) |
11 |
|
3z |
|- 3 e. ZZ |
12 |
11
|
a1i |
|- ( ZZring e. CRing -> 3 e. ZZ ) |
13 |
|
id |
|- ( ZZring e. CRing -> ZZring e. CRing ) |
14 |
|
5nn0 |
|- 5 e. NN0 |
15 |
14
|
nn0zi |
|- 5 e. ZZ |
16 |
15
|
a1i |
|- ( ZZring e. CRing -> 5 e. ZZ ) |
17 |
1 2 9 3 4 5 10 12 7 13 16
|
lineval |
|- ( ZZring e. CRing -> ( ( O ` ( X .- ( A ` 3 ) ) ) ` 5 ) = ( 5 ( -g ` ZZring ) 3 ) ) |
18 |
8 17
|
ax-mp |
|- ( ( O ` ( X .- ( A ` 3 ) ) ) ` 5 ) = ( 5 ( -g ` ZZring ) 3 ) |
19 |
|
eqid |
|- ( -g ` ZZring ) = ( -g ` ZZring ) |
20 |
19
|
zringsubgval |
|- ( ( 5 e. ZZ /\ 3 e. ZZ ) -> ( 5 - 3 ) = ( 5 ( -g ` ZZring ) 3 ) ) |
21 |
15 11 20
|
mp2an |
|- ( 5 - 3 ) = ( 5 ( -g ` ZZring ) 3 ) |
22 |
|
5cn |
|- 5 e. CC |
23 |
|
3cn |
|- 3 e. CC |
24 |
|
2cn |
|- 2 e. CC |
25 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
26 |
22 23 24 25
|
subaddrii |
|- ( 5 - 3 ) = 2 |
27 |
18 21 26
|
3eqtr2i |
|- ( ( O ` ( X .- ( A ` 3 ) ) ) ` 5 ) = 2 |