Metamath Proof Explorer


Theorem linevalexample

Description: The polynomial x - 3 over ZZ evaluated for x = 5 results in 2. (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linevalexample.p P = Poly 1 ring
linevalexample.b B = Base P
linevalexample.x X = var 1 ring
linevalexample.m - ˙ = - P
linevalexample.a A = algSc P
linevalexample.g G = X - ˙ A 3
linevalexample.o O = eval 1 ring
Assertion linevalexample O X - ˙ A 3 5 = 2

Proof

Step Hyp Ref Expression
1 linevalexample.p P = Poly 1 ring
2 linevalexample.b B = Base P
3 linevalexample.x X = var 1 ring
4 linevalexample.m - ˙ = - P
5 linevalexample.a A = algSc P
6 linevalexample.g G = X - ˙ A 3
7 linevalexample.o O = eval 1 ring
8 zringcrng ring CRing
9 zringbas = Base ring
10 eqid X - ˙ A 3 = X - ˙ A 3
11 3z 3
12 11 a1i ring CRing 3
13 id ring CRing ring CRing
14 5nn0 5 0
15 14 nn0zi 5
16 15 a1i ring CRing 5
17 1 2 9 3 4 5 10 12 7 13 16 lineval ring CRing O X - ˙ A 3 5 = 5 - ring 3
18 8 17 ax-mp O X - ˙ A 3 5 = 5 - ring 3
19 eqid - ring = - ring
20 19 zringsubgval 5 3 5 3 = 5 - ring 3
21 15 11 20 mp2an 5 3 = 5 - ring 3
22 5cn 5
23 3cn 3
24 2cn 2
25 3p2e5 3 + 2 = 5
26 22 23 24 25 subaddrii 5 3 = 2
27 18 21 26 3eqtr2i O X - ˙ A 3 5 = 2