Metamath Proof Explorer


Theorem lineval

Description: A term of the form x - C evaluated for x = V results in V - C (part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p P=Poly1R
linply1.b B=BaseP
linply1.k K=BaseR
linply1.x X=var1R
linply1.m -˙=-P
linply1.a A=algScP
linply1.g G=X-˙AC
linply1.c φCK
lineval.o O=eval1R
lineval.r φRCRing
lineval.v φVK
Assertion lineval φOGV=V-RC

Proof

Step Hyp Ref Expression
1 linply1.p P=Poly1R
2 linply1.b B=BaseP
3 linply1.k K=BaseR
4 linply1.x X=var1R
5 linply1.m -˙=-P
6 linply1.a A=algScP
7 linply1.g G=X-˙AC
8 linply1.c φCK
9 lineval.o O=eval1R
10 lineval.r φRCRing
11 lineval.v φVK
12 7 fveq2i OG=OX-˙AC
13 12 fveq1i OGV=OX-˙ACV
14 9 4 3 1 2 10 11 evl1vard φXBOXV=V
15 9 1 3 6 2 10 8 11 evl1scad φACBOACV=C
16 eqid -R=-R
17 9 1 3 2 10 11 14 15 5 16 evl1subd φX-˙ACBOX-˙ACV=V-RC
18 17 simprd φOX-˙ACV=V-RC
19 13 18 eqtrid φOGV=V-RC