Metamath Proof Explorer


Theorem lineval

Description: A term of the form x - C evaluated for x = V results in V - C (part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p P = Poly 1 R
linply1.b B = Base P
linply1.k K = Base R
linply1.x X = var 1 R
linply1.m - ˙ = - P
linply1.a A = algSc P
linply1.g G = X - ˙ A C
linply1.c φ C K
lineval.o O = eval 1 R
lineval.r φ R CRing
lineval.v φ V K
Assertion lineval φ O G V = V - R C

Proof

Step Hyp Ref Expression
1 linply1.p P = Poly 1 R
2 linply1.b B = Base P
3 linply1.k K = Base R
4 linply1.x X = var 1 R
5 linply1.m - ˙ = - P
6 linply1.a A = algSc P
7 linply1.g G = X - ˙ A C
8 linply1.c φ C K
9 lineval.o O = eval 1 R
10 lineval.r φ R CRing
11 lineval.v φ V K
12 7 fveq2i O G = O X - ˙ A C
13 12 fveq1i O G V = O X - ˙ A C V
14 9 4 3 1 2 10 11 evl1vard φ X B O X V = V
15 9 1 3 6 2 10 8 11 evl1scad φ A C B O A C V = C
16 eqid - R = - R
17 9 1 3 2 10 11 14 15 5 16 evl1subd φ X - ˙ A C B O X - ˙ A C V = V - R C
18 17 simprd φ O X - ˙ A C V = V - R C
19 13 18 syl5eq φ O G V = V - R C