Step |
Hyp |
Ref |
Expression |
1 |
|
linply1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
linply1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
linply1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
linply1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
linply1.m |
⊢ − = ( -g ‘ 𝑃 ) |
6 |
|
linply1.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
|
linply1.g |
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) |
8 |
|
linply1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
9 |
|
lineval.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
10 |
|
lineval.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
11 |
|
lineval.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐾 ) |
12 |
7
|
fveq2i |
⊢ ( 𝑂 ‘ 𝐺 ) = ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ) |
13 |
12
|
fveq1i |
⊢ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑉 ) = ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 ) |
14 |
9 4 3 1 2 10 11
|
evl1vard |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑉 ) = 𝑉 ) ) |
15 |
9 1 3 6 2 10 8 11
|
evl1scad |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝐶 ) ) ‘ 𝑉 ) = 𝐶 ) ) |
16 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
17 |
9 1 3 2 10 11 14 15 5 16
|
evl1subd |
⊢ ( 𝜑 → ( ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 ) = ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 ) = ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) |
19 |
13 18
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑉 ) = ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) |