Metamath Proof Explorer


Theorem lineval

Description: A term of the form x - C evaluated for x = V results in V - C (part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p 𝑃 = ( Poly1𝑅 )
linply1.b 𝐵 = ( Base ‘ 𝑃 )
linply1.k 𝐾 = ( Base ‘ 𝑅 )
linply1.x 𝑋 = ( var1𝑅 )
linply1.m = ( -g𝑃 )
linply1.a 𝐴 = ( algSc ‘ 𝑃 )
linply1.g 𝐺 = ( 𝑋 ( 𝐴𝐶 ) )
linply1.c ( 𝜑𝐶𝐾 )
lineval.o 𝑂 = ( eval1𝑅 )
lineval.r ( 𝜑𝑅 ∈ CRing )
lineval.v ( 𝜑𝑉𝐾 )
Assertion lineval ( 𝜑 → ( ( 𝑂𝐺 ) ‘ 𝑉 ) = ( 𝑉 ( -g𝑅 ) 𝐶 ) )

Proof

Step Hyp Ref Expression
1 linply1.p 𝑃 = ( Poly1𝑅 )
2 linply1.b 𝐵 = ( Base ‘ 𝑃 )
3 linply1.k 𝐾 = ( Base ‘ 𝑅 )
4 linply1.x 𝑋 = ( var1𝑅 )
5 linply1.m = ( -g𝑃 )
6 linply1.a 𝐴 = ( algSc ‘ 𝑃 )
7 linply1.g 𝐺 = ( 𝑋 ( 𝐴𝐶 ) )
8 linply1.c ( 𝜑𝐶𝐾 )
9 lineval.o 𝑂 = ( eval1𝑅 )
10 lineval.r ( 𝜑𝑅 ∈ CRing )
11 lineval.v ( 𝜑𝑉𝐾 )
12 7 fveq2i ( 𝑂𝐺 ) = ( 𝑂 ‘ ( 𝑋 ( 𝐴𝐶 ) ) )
13 12 fveq1i ( ( 𝑂𝐺 ) ‘ 𝑉 ) = ( ( 𝑂 ‘ ( 𝑋 ( 𝐴𝐶 ) ) ) ‘ 𝑉 )
14 9 4 3 1 2 10 11 evl1vard ( 𝜑 → ( 𝑋𝐵 ∧ ( ( 𝑂𝑋 ) ‘ 𝑉 ) = 𝑉 ) )
15 9 1 3 6 2 10 8 11 evl1scad ( 𝜑 → ( ( 𝐴𝐶 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝐴𝐶 ) ) ‘ 𝑉 ) = 𝐶 ) )
16 eqid ( -g𝑅 ) = ( -g𝑅 )
17 9 1 3 2 10 11 14 15 5 16 evl1subd ( 𝜑 → ( ( 𝑋 ( 𝐴𝐶 ) ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑋 ( 𝐴𝐶 ) ) ) ‘ 𝑉 ) = ( 𝑉 ( -g𝑅 ) 𝐶 ) ) )
18 17 simprd ( 𝜑 → ( ( 𝑂 ‘ ( 𝑋 ( 𝐴𝐶 ) ) ) ‘ 𝑉 ) = ( 𝑉 ( -g𝑅 ) 𝐶 ) )
19 13 18 syl5eq ( 𝜑 → ( ( 𝑂𝐺 ) ‘ 𝑉 ) = ( 𝑉 ( -g𝑅 ) 𝐶 ) )