| Step | Hyp | Ref | Expression | 
						
							| 1 |  | linply1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | linply1.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | linply1.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | linply1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 5 |  | linply1.m | ⊢  −   =  ( -g ‘ 𝑃 ) | 
						
							| 6 |  | linply1.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 7 |  | linply1.g | ⊢ 𝐺  =  ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) ) | 
						
							| 8 |  | linply1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐾 ) | 
						
							| 9 |  | lineval.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 10 |  | lineval.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 11 |  | lineval.v | ⊢ ( 𝜑  →  𝑉  ∈  𝐾 ) | 
						
							| 12 | 7 | fveq2i | ⊢ ( 𝑂 ‘ 𝐺 )  =  ( 𝑂 ‘ ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) ) ) | 
						
							| 13 | 12 | fveq1i | ⊢ ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑉 )  =  ( ( 𝑂 ‘ ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 ) | 
						
							| 14 | 9 4 3 1 2 10 11 | evl1vard | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑉 )  =  𝑉 ) ) | 
						
							| 15 | 9 1 3 6 2 10 8 11 | evl1scad | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝐶 )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( 𝐴 ‘ 𝐶 ) ) ‘ 𝑉 )  =  𝐶 ) ) | 
						
							| 16 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 17 | 9 1 3 2 10 11 14 15 5 16 | evl1subd | ⊢ ( 𝜑  →  ( ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 )  =  ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) ) | 
						
							| 18 | 17 | simprd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( 𝑋  −  ( 𝐴 ‘ 𝐶 ) ) ) ‘ 𝑉 )  =  ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) | 
						
							| 19 | 13 18 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐺 ) ‘ 𝑉 )  =  ( 𝑉 ( -g ‘ 𝑅 ) 𝐶 ) ) |