Step |
Hyp |
Ref |
Expression |
1 |
|
linply1.p |
|- P = ( Poly1 ` R ) |
2 |
|
linply1.b |
|- B = ( Base ` P ) |
3 |
|
linply1.k |
|- K = ( Base ` R ) |
4 |
|
linply1.x |
|- X = ( var1 ` R ) |
5 |
|
linply1.m |
|- .- = ( -g ` P ) |
6 |
|
linply1.a |
|- A = ( algSc ` P ) |
7 |
|
linply1.g |
|- G = ( X .- ( A ` C ) ) |
8 |
|
linply1.c |
|- ( ph -> C e. K ) |
9 |
|
lineval.o |
|- O = ( eval1 ` R ) |
10 |
|
lineval.r |
|- ( ph -> R e. CRing ) |
11 |
|
lineval.v |
|- ( ph -> V e. K ) |
12 |
7
|
fveq2i |
|- ( O ` G ) = ( O ` ( X .- ( A ` C ) ) ) |
13 |
12
|
fveq1i |
|- ( ( O ` G ) ` V ) = ( ( O ` ( X .- ( A ` C ) ) ) ` V ) |
14 |
9 4 3 1 2 10 11
|
evl1vard |
|- ( ph -> ( X e. B /\ ( ( O ` X ) ` V ) = V ) ) |
15 |
9 1 3 6 2 10 8 11
|
evl1scad |
|- ( ph -> ( ( A ` C ) e. B /\ ( ( O ` ( A ` C ) ) ` V ) = C ) ) |
16 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
17 |
9 1 3 2 10 11 14 15 5 16
|
evl1subd |
|- ( ph -> ( ( X .- ( A ` C ) ) e. B /\ ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) ) |
18 |
17
|
simprd |
|- ( ph -> ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) |
19 |
13 18
|
syl5eq |
|- ( ph -> ( ( O ` G ) ` V ) = ( V ( -g ` R ) C ) ) |