| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linply1.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
linply1.b |
|- B = ( Base ` P ) |
| 3 |
|
linply1.k |
|- K = ( Base ` R ) |
| 4 |
|
linply1.x |
|- X = ( var1 ` R ) |
| 5 |
|
linply1.m |
|- .- = ( -g ` P ) |
| 6 |
|
linply1.a |
|- A = ( algSc ` P ) |
| 7 |
|
linply1.g |
|- G = ( X .- ( A ` C ) ) |
| 8 |
|
linply1.c |
|- ( ph -> C e. K ) |
| 9 |
|
lineval.o |
|- O = ( eval1 ` R ) |
| 10 |
|
lineval.r |
|- ( ph -> R e. CRing ) |
| 11 |
|
lineval.v |
|- ( ph -> V e. K ) |
| 12 |
7
|
fveq2i |
|- ( O ` G ) = ( O ` ( X .- ( A ` C ) ) ) |
| 13 |
12
|
fveq1i |
|- ( ( O ` G ) ` V ) = ( ( O ` ( X .- ( A ` C ) ) ) ` V ) |
| 14 |
9 4 3 1 2 10 11
|
evl1vard |
|- ( ph -> ( X e. B /\ ( ( O ` X ) ` V ) = V ) ) |
| 15 |
9 1 3 6 2 10 8 11
|
evl1scad |
|- ( ph -> ( ( A ` C ) e. B /\ ( ( O ` ( A ` C ) ) ` V ) = C ) ) |
| 16 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 17 |
9 1 3 2 10 11 14 15 5 16
|
evl1subd |
|- ( ph -> ( ( X .- ( A ` C ) ) e. B /\ ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) ) |
| 18 |
17
|
simprd |
|- ( ph -> ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) |
| 19 |
13 18
|
eqtrid |
|- ( ph -> ( ( O ` G ) ` V ) = ( V ( -g ` R ) C ) ) |