| Step | Hyp | Ref | Expression | 
						
							| 1 |  | linply1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | linply1.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | linply1.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | linply1.x |  |-  X = ( var1 ` R ) | 
						
							| 5 |  | linply1.m |  |-  .- = ( -g ` P ) | 
						
							| 6 |  | linply1.a |  |-  A = ( algSc ` P ) | 
						
							| 7 |  | linply1.g |  |-  G = ( X .- ( A ` C ) ) | 
						
							| 8 |  | linply1.c |  |-  ( ph -> C e. K ) | 
						
							| 9 |  | lineval.o |  |-  O = ( eval1 ` R ) | 
						
							| 10 |  | lineval.r |  |-  ( ph -> R e. CRing ) | 
						
							| 11 |  | lineval.v |  |-  ( ph -> V e. K ) | 
						
							| 12 | 7 | fveq2i |  |-  ( O ` G ) = ( O ` ( X .- ( A ` C ) ) ) | 
						
							| 13 | 12 | fveq1i |  |-  ( ( O ` G ) ` V ) = ( ( O ` ( X .- ( A ` C ) ) ) ` V ) | 
						
							| 14 | 9 4 3 1 2 10 11 | evl1vard |  |-  ( ph -> ( X e. B /\ ( ( O ` X ) ` V ) = V ) ) | 
						
							| 15 | 9 1 3 6 2 10 8 11 | evl1scad |  |-  ( ph -> ( ( A ` C ) e. B /\ ( ( O ` ( A ` C ) ) ` V ) = C ) ) | 
						
							| 16 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 17 | 9 1 3 2 10 11 14 15 5 16 | evl1subd |  |-  ( ph -> ( ( X .- ( A ` C ) ) e. B /\ ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) ) | 
						
							| 18 | 17 | simprd |  |-  ( ph -> ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) | 
						
							| 19 | 13 18 | eqtrid |  |-  ( ph -> ( ( O ` G ) ` V ) = ( V ( -g ` R ) C ) ) |