Metamath Proof Explorer


Theorem lineval

Description: A term of the form x - C evaluated for x = V results in V - C (part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p
|- P = ( Poly1 ` R )
linply1.b
|- B = ( Base ` P )
linply1.k
|- K = ( Base ` R )
linply1.x
|- X = ( var1 ` R )
linply1.m
|- .- = ( -g ` P )
linply1.a
|- A = ( algSc ` P )
linply1.g
|- G = ( X .- ( A ` C ) )
linply1.c
|- ( ph -> C e. K )
lineval.o
|- O = ( eval1 ` R )
lineval.r
|- ( ph -> R e. CRing )
lineval.v
|- ( ph -> V e. K )
Assertion lineval
|- ( ph -> ( ( O ` G ) ` V ) = ( V ( -g ` R ) C ) )

Proof

Step Hyp Ref Expression
1 linply1.p
 |-  P = ( Poly1 ` R )
2 linply1.b
 |-  B = ( Base ` P )
3 linply1.k
 |-  K = ( Base ` R )
4 linply1.x
 |-  X = ( var1 ` R )
5 linply1.m
 |-  .- = ( -g ` P )
6 linply1.a
 |-  A = ( algSc ` P )
7 linply1.g
 |-  G = ( X .- ( A ` C ) )
8 linply1.c
 |-  ( ph -> C e. K )
9 lineval.o
 |-  O = ( eval1 ` R )
10 lineval.r
 |-  ( ph -> R e. CRing )
11 lineval.v
 |-  ( ph -> V e. K )
12 7 fveq2i
 |-  ( O ` G ) = ( O ` ( X .- ( A ` C ) ) )
13 12 fveq1i
 |-  ( ( O ` G ) ` V ) = ( ( O ` ( X .- ( A ` C ) ) ) ` V )
14 9 4 3 1 2 10 11 evl1vard
 |-  ( ph -> ( X e. B /\ ( ( O ` X ) ` V ) = V ) )
15 9 1 3 6 2 10 8 11 evl1scad
 |-  ( ph -> ( ( A ` C ) e. B /\ ( ( O ` ( A ` C ) ) ` V ) = C ) )
16 eqid
 |-  ( -g ` R ) = ( -g ` R )
17 9 1 3 2 10 11 14 15 5 16 evl1subd
 |-  ( ph -> ( ( X .- ( A ` C ) ) e. B /\ ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) ) )
18 17 simprd
 |-  ( ph -> ( ( O ` ( X .- ( A ` C ) ) ) ` V ) = ( V ( -g ` R ) C ) )
19 13 18 syl5eq
 |-  ( ph -> ( ( O ` G ) ` V ) = ( V ( -g ` R ) C ) )